
M a s t e r T h e s i s

Decentralized Information Gathering
with Continuous and very large
Discrete Observation Spaces

Caus Danu

danu.caus@studium.uni-hamburg.de
Study Program: Intelligent Adaptive Systems
Matr.-Nr.: 7014833

Primary Supervisor: Dr. Mikko Lauri
Secondary Supervisor: Prof. Dr. Simone Frintrop

Submission: June 2020

Abstract

Joint, end-to-end training of perception and planning systems is a challenging, but promising small
step in the direction of Artificial General Intelligence (AGI). Scaling to multiple cooperating agents is
an extra step in this direction and addresses problems that require team work to be solved efficiently,
such as rescue missions for instance. This work introduces COGNet-DICE, a new algorithm designed
to integrate perception of discrete and continuous signals with planning in a decentralized multi-agent
setting. The planning is based on the Graph-based Direct Cross-Entropy method for policy search, also
known as the G-DICE evolutionary algorithm, while perception is ensured by neural nets embedded
into the graph nodes. The new algorithm scales well to very high-dimensional inputs and multiple
agents with the help of Variational Autoencoders, that provide input compression, as well as training
dataset augmentation and robustness to noise. We show that the algorithm reaches state of the art
performance on signal source localization problems.

Zusammenfassung

Das Ende-zu-Ende Verbundtraining von Wahrnehmungs- und Planungssystemen ist ein ebenso heraus-
fordernder wie vielversprechender Schritt in Richtung allgemeine künstliche Intelligenz. Die Skalierung
auf mehrere kooperierende Agenten ist ein weiterer Schritt in diese Richtung, wobei hierdurch Prob-
leme adressiert werden, die auf Team-Work basieren. Hierzu gehören unter anderem Rettungsmissio-
nen. In dieser Arbeit wird COGNet-DICE vorgestellt. Dies ist ein neuartiger Algorithmus, der die
Wahrnehmung von diskreten und kontinuierlichen Signalen in einem dezentralisiertem Multi-Agenten
Aufbau mit Planung integriert. Die Planung basiert auf der Graph-based Direct Cross-Entropy Meth-
ode für Strategiesuche, auch bekannt als G-DICE evolutionärer Algorithmus, wobei der Wahrnehmungs-
aspekt durch neuronale Netze übernommen wird, welche in den einzelnen Knoten eingebettet sind.
Der neuartige Algorithmus skaliert sehr gut auf hochdimensionale Eingangsgrößen und mehrere Agen-
ten durch die Verwendung von Variations-Autoencodern, welche Eingangskompression bieten, sowie
Trainingsdatensatz Vergrößerung und eine hohe Rauschtoleranz. Wir zeigen, dass der Algorithmus
Spitzenleistung nach dem aktuellen Stand der Technik bei Signalquellenlokalisierung erreicht.

Contents

1 Introduction 12
1.1 Integrated continuous perception and planning with high dimensions 12
1.2 Technical Applications . 13
1.3 Biological Motivation . 13
1.4 Core concepts made easy . 15

1.4.1 Graphical planning models . 15
1.4.2 Frequentist vs Bayesian approach to learning 17
1.4.3 How to measure learning . 17
1.4.4 Compressing perception . 18

1.5 Overview of previous solutions . 18
1.6 New research questions . 19
1.7 Main contributions . 20
1.8 Reasons and intuition . 21

2 Background Theory 24
2.1 Decentralized-POMDPs . 24
2.2 Cross-entropy optimization . 26
2.3 Variational Autoencoders . 28
2.4 G-DICE . 31

3 Related Work 35
3.1 Solving Dec-POMDPs . 35

3.1.1 Exact solutions . 35
3.1.2 Approximate solutions . 36

3.2 High-dimensional observations in decision-making under uncertainty 37

4 Methods 39
4.1 The COGNet-DICE planning algorithm . 39

4.1.1 Policy representation . 39
4.1.2 Learning . 40

4.2 Multi-dimensional COGNet-DICE with image data . 43
4.3 The Encoded COGNet-DICE planning algorithm . 43

5 Experiments and Results 45
5.1 Comparison experiment: COGNet-DICE vs COG-DICE 45

5.1.1 Moving source localization simulator . 45
5.1.2 COGNet-DICE for one-dimensional dynamic source localization 46
5.1.3 COG-DICE for one-dimensional dynamic source localization 49

5.2 Separate training of the perception block in COGNet-DICE 50
5.3 Multi-dimensional COGNet-DICE . 51

5.3.1 2D Intensity heatmap simulator . 51
5.3.2 Training the Variational Autoencoder . 52
5.3.3 2D COGNet-DICE experiment . 53
5.3.4 Encoded COGNet-DICE experiment . 55

6 Conclusions 59

Bibliography 61

7

Contents

Eidesstattliche Versicherung 64

8

List of Figures

1.1 Brain centers for different types of intelligence . 14
1.2 Bayesian Network representation . 15
1.3 Agent interaction with the world . 16
1.4 Graphical representation of the development of states, measurements and controls . . . 16
1.5 (Variational) Autoencoder structure . 18
1.6 Graph implementation of the Cross-Entropy policy search 19
1.7 New proposal for integrating perception and planning 21
1.8 The modular structure of the natural brain . 22
1.9 Leveraging a higher-dimensional space . 23
1.10 The artificial neuron as a powerful building block . 23

2.1 Moore vs Mealy Machines . 31
2.2 G-DICE policy search . 33

4.1 Augmenting the observation dataset for Computer Vision applications 43
4.2 Compressing the observation space . 44

5.1 Tagging simulation . 46
5.2 Plain COGNet-DICE learned controllers . 47
5.3 Plain COGNet-DICE action distributions . 47
5.4 Plain COGNet-DICE next node distributions for agent 0 48
5.5 Plain COGNet-DICE next node distributions for agent 1 48
5.6 COG-DICE learned controllers . 49
5.7 Separate training of the perception block . 50
5.8 Heatmap simulation scene . 52
5.9 Agent vision range samples . 52
5.10 Physical meaning of the encoded vision patch . 53
5.11 2D COGNet-DICE action distributions . 54
5.12 Encoded COGNet-DICE learned controllers . 55
5.13 Encoded COGNet-DICE action distributions . 56
5.14 Encoded COGNet-DICE next node distributions for agent 0 57
5.15 Encoded COGNet-DICE next node distributions for agent 1 58

9

List of Tables

2.1 Notation summary . 25

4.1 Notation extension . 40

5.1 COGNet-DICE vs COG-DICE policy values . 45
5.2 Tagging simulation rewards . 46
5.3 Actions taken in the COG-DICE experiment . 49
5.4 Decision boundaries in the observation space for the COG-DICE experiment 49
5.5 Next nodes for agent 0 as given by the COG-DICE algorithm 50
5.6 Next nodes for agent 1 as given by the COG-DICE algorithm 50
5.7 Policy values when training perception separately . 51
5.8 2D COGNet-DICE vs Encoded COGNet-DICE policy values 51
5.9 Heatmap simulation rewards . 51

10

List of Algorithms

1 G-DICE with deterministic policies . 34

2 Rollout using a stochastic joint policy . 40
3 Gathering training data for the node transition function of node qi 41

11

1 Introduction

Planning is the ability to come up with a sequence of well thought actions in order to achieve an end
goal. Perception is the ability to interpret the environment using different sensory information: visual,
auditory, touch, such that these inform us of the state we are in towards the goal we strive to achieve.
Everything we people do seems to involve both. In the process of planning and perceiving we learn a
new task by building a behaviour we technically call a policy, or action policy. We plan what to do
and then we receive some perceptual feedback. Based on the feedback we update our plan and may
act differently next time, when we may perceive better outcomes with different visual, auditory and
haptic cues. We even plan how to perceive better, not only what happened as a result of an action.
The state of the art in artificial intelligence (AI) today is such that we treat different systemic blocks

separately: there is an architecture for vision problems, a separate architecture for language problems,
separate treatment of planning, motor skills etc. Real life evidence suggests that they are in fact very
closely tied together with ambiguous boundaries. For example, there is a close connection between
vision and planning as suggested by [Law and Gold, 2009]. Therefore, more effort needs to be invested
in integrating these different modalities together in order to emulate in an artificial agent the complex
activities that we people do with ease. An added layer of complexity that evolution created through
many iterations is the fact that different organisms that possess a very good integration of all these
modalities to begin with, effectively work together in teams and cooperate, resulting in a compounded
outcome.
This work will shed more light on the integration between the perception of continuous signals and

planning of actions based on these perceptions. Moreover, this thesis will scale the proposed solution
to vision input, which is arguably the most important and informative sense out of all. We will assume
a multi-agent setting all throughout the thesis, which is an important step towards the hierarchical
complexity that the natural world exhibits.

1.1 Integrated continuous perception and planning with high
dimensions

The problem addressed in this thesis consists in finding a new way to perceive and plan at the same
time. At first, it may seem to be a control theory problem in the sense that we need to come up with a
sequence of actions to control the outcome of a task. However, there is a small but important nuance:
in control theory the problems are treated as if the equation governing a certain process is already
known and the task is to find good solutions that satisfy the equation. Since we also introduce the
aspect of creating the model equation ourselves, we enter the reinforcement learning (RL) realm. The
emphasis falls therefore on perception as well, along with learning how to act. In the perception phase
the agent learns a model from the sensory data it receives as a result of the actions it takes. The idea is
not only to be given a model and learn to act based on it, but rather to come up with the model itself
about the physical world and based on it do the planning and find sequences of actions that result in
a high performance score.
Up until today there was not much progress made in adapting perception to real world robotics

applications. Our world is intrinsically continuous and therefore the perceptual block should be able
to work with continuous real numbers, and not just discretized and quantized values. Secondly, even
if it is convenient to work with large grids of data, like it is the case of computer vision, it is necessary
to find a principled approach to compress them without much loss and solve the scaling issues when
many agents have to analyze very high-dimensional discrete data.
In summary, the problem treated in this work falls at the intersection between control theory,

reinforcement learning, computer vision and additionally game theory, because of the multiple agents

12

1.2 Technical Applications

involved. The aim is to make artificial agents intelligently classify a continuous signal and efficiently
act based on it. A second goal is to have the same algorithm also work with discrete data, but very-high
dimensional and for a multi-agent setting. Another important aspect is to have a generic a framework
as possible, agnostic to the type of task the agent might encounter, hence using a neural network that
can adapt to the actions that need to be performed, which may be different for different tasks, and the
changing continuous input associated with performing these actions.

1.2 Technical Applications

One of the most prominent domains in which planning algorithms with continuous visual inputs are
useful is the field of rescue missions. In particular, we can mention Unmanned Air Vehicles, or UAVs and
Unmanned Underwater Vehicles, or UUVs. With the advent of cheaper technology and manufacturing
materials, these types of agents can be mass-produced and used to cooperate in all sorts of missions
that require prompt and efficient scanning of large areas.
As a concrete example can serve the crashing of various planes either on land, or especially in the

ocean waters. In many cases it took a long time to localize the accident sites and some of them were
not found at all because of too much wasted time in the first critical moments after the crash, which
led to the debris being carried away intractably by the water currents. Surprisingly, even in relatively
small areas, such as a mountain range, it is hard to conduct search missions like these.
Another example can be nuclear accidents or other accidents resulting in toxic chemical substances

being released and making surveillance missions by people very hard or even impossible. Such situations
make the search task even harder because of the added noise. A relevant example at the moment of
writing this thesis is the Fukushima Daiichi Nuclear Power Plant disaster. Up to this date, there
is no concrete localization of the melted core waste, which poses a serious ecological threat to the
underground water supply amongst other things. The mission is extremely hard not only because of
the high radiation level which limits the time robots can get exposed to it, but also because of the
associated noise this injects into the stream of data perceived by the robot sensors. If many agents
were working together, such as drones analyzing the heatmaps and radiation levels in the accident
vicinity, the problem can be at least partially mitigated. More agents means less exposure time per
agent, and different quality of individual observations for different agents, which can potentially result
in a better quality merged outcome with less noise overall.
Another important and technically feasible application is the cleansing of ocean water supplies using

automatic patrol agents that swipe large areas and detect polluting waste, such as petrol spills for
example, or solid debris. One might easily consider in this case various heterogeneous UUVs working
together: some smaller agents quickly scanning and finding waste, and others with a larger storage
capacity loading and carrying it to a collection point.
From an archaeological point of view, underwater patrolling can also be very useful, since it definitely

increases the chance of finding valuable artifacts, tools and treasures, whose existence is suggested by
historical documents, but were never physically found. Closely related to this is also the exploration of
wild life and discovery of new organisms leaving at very high depth, where light is scarce and pressure
is very high.

1.3 Biological Motivation

Artificial Intelligence is a broad field with many aspects. This mainly stems from the fact that intel-
ligence itself is a generic term that implies actually many different "types of intelligence". The main
canonical types can be considered to be: Logic, performed by neurons located in the frontal lobe of
the human brain; Vision, with dedicated neurons located in the Occipital lobe of the human brain;
Language, mainly tied with the temporal lobe, and including regions such as: "Broca’s area" for lex-
ical intelligence and "Wernicke’s area" for grammatical and phonological intelligence. Their physical
location is illustrated in Figure 1.1

13

1 Introduction

Figure 1.1: Brain centers for different types of intelligence. Notice how planning (Frontal lobe) and
vision (Occipital lobe) occupy opposing regions of the brain. Nevertheless, we humans use
both intricately combined in order to perform the simplest of tasks.

When referring to logic, it is an ambiguous notion in itself, having connotations with other terms like:
mathematical reasoning, planning, decision making etc. In this work we will tackle decision making
and think of it as the ability to plan a sequence of future actions in order to optimize an end result.
We will also embed vision data in the planning process and emulate an end-to-end training procedure
mixing both aspects together.
In the biological realm, people rely very much on planning and vision in doing the simplest of things,

like hand-eye coordination for example. In complex activities like various sports for instance, the
interactions between the two is vital. The same can therefore be said for the case of artificial agents,
especially when talking about rescue agents such as Unmanned Air Vehicles (UAVs) and Unmanned
Underwater Vehicles (UUVs), where optimal actions and reliable observations are very important for
a fast and efficient handling of complicated, time-critical missions.
One relevant and interesting example that ties both vision and planning literally together is the

phenomenon of saccades. A saccade is a rapid eye movement through which humans sample information
from the environment. In other words, the brain has certain algorithms that plan eye movements in
order to capture vision data that will subsequently be used to plan further actions. For example,
the reader is encouraged to move her eyes from left to right a few times without fixating gaze at any
object in her field of vision, and then try to track with the eyes her own finger moving from left to
right. The reader will hopefully notice how the eyes move much more smoothly while trying to track
the finger, and much more abruptly without an object to track. This is a nice example of what goes
under the name of Active Vision, in other words: planning on where to look in order to get the most
information from the environment. Interestingly, the example shows how the brain evolved to use
different circuits and algorithms in order to plan eye movements and it speaks about the importance of
planning where to look in order to acquire vision data. Incidentally, this example illustrates what goes
in the literature under the name of bottom-up attention, a kind of involuntary attention where the
eyes are attracted to certain predefined cues like color-contrast, luminosity-contrast, movement (which
is the main cue in this example) etc.
Afterwards, how to use vision data to guide other actions, such as a limb movement for instance,

is a different, higher-level planning problem. For example, how exactly to move a hand in order to
grasp a cup involves the mechanism of the so called top-down attention, where the brain guides
the eyes where to look in order to see both the cup and the hand, and gives correction feedback to
the hand such that it is being correctly positioned before attempting a grasp. All of this is a complex
planning experiment with vision feedback, and there are many other examples related to such top-down
attention mechanisms.
The above examples are meant to persuade the reader of the intricate relation between planning and

14

1.4 Core concepts made easy

computer vision in an artificial agent, much like in a biological setting. In the following chapters we
will illustrate how this can be achieved from a mathematical point of view. First we will put emphasis
on planning. Then, by scaling our algorithm and framework to deal with very high-dimensional data,
we will be able to consider vision data as input to our planning algorithm.

1.4 Core concepts made easy

This section will provide a high-level, gentle introduction into the essential concepts necessary for
further sections. In order to understand how planning is done, Decentralized Partially Observable
Markov Decision Processes are emphasized as the core framework. To be able to address continuous
signals instead of merely discrete ones, the concept of learning is introduced in relation to information
theory and the notion of entropy. Compression schemes from deep learning will also prove to be useful
for scaling the solution to very high-dimensional problems with many agents and hence, a separate
section will be dedicated to Autoencoders and Variational Autoencoders.

1.4.1 Graphical planning models

One of the ways in which planning can be reasoned about is with the help of graphical models. There
are 2 major directions when it comes to these models: Bayesian networks and Markov blankets.
Bayesian networks are used in close connection with Bayesian statistics. They consist of nodes

connected by edges, where each node will represent the computation of a conditional or unconditional
probability distribution that will subsequently be multiplied by other probabilities from other connected
nodes in order to come up with a new metric. An illustration is provided in Figure 1.2. As we can see,
this network can be conceptualized as a decision tree. We can use it in many ways: to judge the utility
of following different branches, to prune some of the branches all together if they seem not likely to
lead to good outcomes, to add new leafs and explore new policies, etc.

Figure 1.2: Bayesian Network representation. By following the right conditions Condi and/or negation
of the conditions i.e. ¬Condi we will build a decision branch consisting of a sequence of
decisions. We can design the tree in such a way that each visited node is associated with a
probability metric which will help in creating good decision branches to explore or exploit
and ignore/prune sequences that are unlikely to result in useful outcomes.

The second graphical model: Markov blankets is closely related to what we call Markov Decision
Processes, or MDPs. A Markov decision process is a framework for modeling decision making very
popular in robotics. It consists of states of an agent represented by graph nodes and control actions an
agent can issue in order to act on the surrounding environment. Once the agent acts, the environment

15

1 Introduction

reacts with a response in the form of a reward R. Figure 1.3 represents the setting we assume, where
the agent can act upon the world with its actuators and then receive a reward back.

Figure 1.3: Agent interaction with the world. Agent has partial control by acting on the world. The
world on the other hand reacts and the agent takes note of this response through the reward
it receives.

What is peculiar for MDPs is that the states are uniquely identifiable, i.e. there is no uncertainty
about the state of the decision process. A natural question might arise, namely: What happens when
the state is not uniquely identifiable ? For example: an agent might move around and see many doors
in a corridor that look the same. How will it know exactly where it is localized along this corridor ? In
such situations, a partially observable Markov Decision Process or POMDP is particularly useful. A
POMDP complicates and enhances the MDP by assuming the observations received by the agent are
noisy and uncertain. This effectively means that we can no longer observe the state, but rather have a
belief about what this state might be with a certain probability. In other words, we have a statistical
distribution over the potential states of an agent, which we call a "belief". Figure 1.4 illustrates how
an agent perceives, acts and builds a belief about what state the environment might be in. As one can
see, this model is particularly useful for representing an artificial agent that has actuators for acting in
the world, sensors for measuring observations and a belief over potential internal states S at different
points in time.

Figure 1.4: Graphical representation of the development of states, measurements and controls. A circle
represents the belief about what the internal state of the world is, namely P (S). The agent
receives observations zt through its sensors and acts on the environment through control
actions at in order to transition to the next internal state.

16

1.4 Core concepts made easy

Going one step further to consider more than one agent, we end up with a new framework: "De-
centralized Partially Observable Markov Decision Process", or Dec-POMDP. The aim of the multiple
agents is to work together in order to achieve a global goal. It is important to emphasize that all the
agents receive the same joint reward. This aspect is to be contrasted with the broader field of Game
Theory, where each agent has its own individual reward. Because of the individual rewards, we can
say that agents are self-centered, trying to maximize their own score. In the case of Dec-POMDPs
however, the agents are cooperating, since the actions they take individually will affect the common
reward they all receive in the end. To reiterate and summarize, Decentralized Partially Observable
Markov Decision Processes represent a way of reasoning about multiple agents planning and cooper-
ating together, when there is uncertainty in the observations they receive, as well as in the outcome of
the actions they take.
Our framework of reasoning in this thesis will be the Dec-POMDP and therefore a more formal

mathematical description is required and will be given in the next chapter.

1.4.2 Frequentist vs Bayesian approach to learning

In Machine Learning there are two major approaches to learning that stand out: the Frequentist
approach and the Bayesian approach. In the Frequentist approach we assume that the model we are
trying to learn follows a unique underlying distribution, parametrized by a true θ0. This is to be
contrasted with the Bayesian approach to learning, where there is no true underlying and unique θ0
parameter, but rather a distribution over many potential θ’s, and therefore many potential hypotheses
that can explain the same training data. In a Bayesian setting we try to compute a so called posterior
distribution by applying the Bayesian formula of inverting probabilities:

P (θ|Data) =
P (Data|θ) ∗ P (θ)

P (Data)
(1.1)

This formula says that in order to compute the most likely model parameter θ given the seen Data,
we need a prior distribution over the model parameter θ, i.e. P (θ) given by previous estimations and
experiments, and a likelihood of that Data given the model parameter θ, i.e. P (Data|θ). Additionally,
the probability of the entire data under all possible model parameters θ needs to be computed, i.e.
P (Data) and used as a normalization factor.
The last step in the Bayesian setting, namely calculating the normalization factor, is a big com-

putational inconvenience. In this work however, we will make use of a procedure called Maximum
Likelihood Estimation (short MLE), which is a tool for finding the model parameter θ̂ in the Frequen-
tist approach to learning. Mathematically, the maximum likelihood estimate of a model parameter θ
is obtained by maximizing the log-likelihood of seeing the training data.

1.4.3 How to measure learning

To be able to quantify learning there has to be a metric of some kind that describes the acquisition
of "learning units". Information can be thought of as a metric directly proportional to the amount
of these learning units, which are referred to as bits. Entropy on the other hand would be something
inversely proportional to this metric. Semantically, it is useful to associate the notion of entropy with
uncertainty. In other words, entropy is the opposite of information. Gaining information is basically
minimizing uncertainty, and therefore minimizing the entropy within a system. The notion of entropy
originally appeared in physics, e.g. in thermodynamics or quantum mechanics, and was used to measure
how chaotic a system is; for example how chaotic is the movement of atoms when temperature changes.
In this sense, it is also a measure of uncertainty or lack of predictability.
In summary, when a system is predictable we say there is a great amount of information we learned,

measured in bits, that allows us to predict its behaviour. To the contrary, when something is chaotic,
we say that learning did not occur and that the entropy is high. Consequently, we can judge how well
a system learns something by observing how these metrics, namely information and entropy change
over time.

17

1 Introduction

1.4.4 Compressing perception

To be able to scale the solution to the problem to higher dimensions there needs to be a way of
approximately solving the addressed task, rather than in an exact manner with raw inputs and brute
force. One step in approximating the solution is accomplished in the planning phase, when only a small
part of the best policies are kept for the policy improvement step and the rest are temporarily pruned
from the tree of potential branches to follow (see Figure 1.2 for intuition about pruning). Another
approximating step is executed in the perception phase. Here the task is to perform a compression of
the input signal. There are many compression algorithms that can do the job, either lossy or lossless,
such as Principal Component Analysis for example, or PCA. However, one of the most state of the
art ways in deep learning is to use an Autoencoder (see Figure 1.5). An Autoencoder is a neural
network consisting of two other blocks: an encoder and a decoder. The encoder tries to bring the input
into a lower-dimensional space, whereas the decoder tries to reconstruct the input using the lower-
dimensional variable created by the encoder. In the training process, the compressed variable which
will be denoted as L becomes more and more information dense, such that the reconstructed output
gets a closer resemblance to the input with each new training step. An Autoencoder, unlike other
compression schemes, has the advantage that it can decide on its own what features are important for
different datasets.
In the algorithm proposed by this thesis, the perception block will leverage neural networks for

interpreting continuous inputs. It is a well known fact that neural nets in general, and hence the
nets we will design as building blocks of the new algorithm, are very much data driven, requiring
a lot of training items to get good performance. For this reason, instead of an Autoencoder, it is
better to use a so called Variational Autoencoder that can not only compress, but also augment the
training dataset. A Variational Autoencoder has the added feature of a prior, typically in the form
of a Gaussian distribution, that allows the decoder to stochastically recreate the input with the same
sampled latent variable L. In other words, many small variations of the input are created in the process
of reconstructing the input. This is very useful in augmenting training data and as a result: coping
with noisy environments, when the agents take real world measurements that do not look exactly the
same as the inputs used in the training simulator. In case of transfer learning from a controlled and
constrained simulation environment to real moving robots, this type of variance in what the agent
could measure in practice is very useful.

Figure 1.5: (Variational) Autoencoder structure. Two neural networks: an encoder that compresses
the input, and a decoder that decompresses it, are trained together in order to create a
useful latent representation of the input.

1.5 Overview of previous solutions

The problem of perceiving and planning involves two aspects: how to interpret the observation space,
and how to use these observations in planning good actions to take over a sequence of time steps.
Related to observations it is worth mentioning that most of the prior work addresses discrete spaces

rather than continuous ones. In many past works the observations were binned/discretized into uni-
form grids with quantized values. One problem is that both binning and quantizing can throw away
important information. Also, if the resolution of the observation grid is too high, the policy search
algorithm can easily blow out of proportion, having too many cells to consider.

18

1.6 New research questions

Various analytical techniques made it possible to tackle continuous spaces as well. Machine learning
classifiers such as radial basis functions and beta distributions were used to cluster similar continuous
observations into non-uniform grids. Such clustering results in a more compact semantic understanding
of the observation space, and it is helpful during online planning for the policy search algorithm to
deal with a smaller group of clustered items rather than having to iterate exhaustively through many
cells in high resolution grids.
On the planning side the problem boils down to searching efficiently in a huge action space. Various

computer science algorithms, accompanied by scalable data structures are key to managing the high
number of policy combinations to choose from. They can be divided into exact algorithms that guaran-
tee finding an optimal solution, and approximate algorithms that may find very good, but sub-optimal
solutions. To find optimal solutions in a planning problem there’s a need for a good heuristic. It was
proven that, provided a good heuristic for a single agent scenario, such an optimal algorithm is A*. A
counterpart for the multi-agent case was also developed and naturally entitled Multiagent A*.
Another important approach developed in the past was related to Game Theory and consisted in

finding such a policy for an agent that satisfies a so called Pareto optimal outcome, i.e. there doesn’t
exist any other more advantageous action for one agent without making the situation worse for another
agent. Reaching this type of equilibrium is an important step in achieving overall efficiency, because
all agents do not act in the detriment of one another.
Immediately related to the work of this thesis is the cross-entropy method for policy search. It

consists in sampling and evaluating many action-observation pairs and keeping only a small subset
of the best performing ones for policy improvements. The cross-entropy approach can have different
implementations. The one we are considering in this thesis is the graph-based implementation. It
is illustrated in Figure 1.6. The idea is to have a graph for each agent with nodes such as the one
presented below. Each node has two main components embedded in it: an action distribution and an
observation classifier. They have to be learned through various machine learning techniques. Other
works have done this through machine learning methods available prior to the deep learning era. In this
thesis however we will use deep learning techniques, i.e. we will embed neural networks in each node
of the graphs, as well as have a global Variational Autoencoder that each node can use for augmenting
its training dataset.

Figure 1.6: Graph implementation of the Cross-Entropy method with continuous observations: a par-
ticular node in the graph is responsible for learning an action distribution, as well as learning
how to cluster continuous observations and how to transition to next nodes.

1.6 New research questions

What other works in the same field have been doing is to pick a generic model for input clustering and
find the best parameters of it through maximum likelihood estimation. For example [Clark-Turner
and Amato, 2017] has researched a beta distribution for observation classification, while [Omidshafiei
et al., 2017] investigated the radial basis function. In this work we will departure from the model

19

1 Introduction

based approach, and assume we have a generic neural network capable of modelling any function.
Theoretically any non-linear function can be modeled by an infinite sum of polynomials as it is the
case with Taylor and Maclaurin Series. Fourier Series picture a similar outcome with the help of
sinusoids instead of polynomials. More generally, a neural network should be able to learn a linear
relation of non-linear basis functions and there should be no need to make assumptions about any a
priori models. If however there is still such a need, there is always the possibility to define a prior layer
within the network.

Neural nets offer several advantages in the context of our problem. In a discrete version of the
problem, the input is simply discretized into bins, which is very inefficient, potentially leading to
important information being lost. A neural net on the other hand is capable of extracting the important
features and ignore the irrelevant ones. Assumptions about what model the input classifier should follow
(ex: radial basis function, beta function, Dirichlet etc.) can also lead to insufficiently correct clustering
of the observations. A neural network however, is a universal input classifier that can approximate any
underlying model. A third convenience is that a neural net has the added benefit of directly coupling
between the learned input features and what action to take.

Another thread of thought is that neural networks can also serve as a way of adaptation to high-
dimensional problems. They can specifically be modeled as a function approximator in a lower-
dimensional space, process known as compression. Even if the compression is lossy, i.e. results in
information being leaked, we can consider this a feature: it helps the system ignore redundant in-
formation and not get distracted by noise. Variational Autoencoders are a type of such compressing
neural nets. They encode the input into a latent proxy that offers better robustness to noise. In other
words, we can abstract the information that has been leaked in the process of compression and still
make the system operate reliably within a margin of error.

Inspired by the above points and thoughts, the following questions are posed in this thesis:

1. Can a graph-based direct cross-entropy algorithm be combined with neural networks and suc-
cessfully trained to directly couple the tasks of perception and planning ?

2. If yes, how does such an algorithm perform in the case of continuous observations and states
? In particular: is such an algorithm useful for source localization problems with continuous
observations and states ?

3. And lastly, does this algorithm scale to very high-dimensional discrete inputs, such as images,
when we use a lossy compression scheme derived with the help of a Variational Autoencoder ?

All these questions will be answered in the sections to come using appropriate experiments.

1.7 Main contributions

The key research goal for us will be to analyze the possibility of a more intimate integration between
perception and planning as previously accomplished. The approach by which integrated perception
and planning is done in this work involves a graph data structure with neural net classifiers embedded
in each node. The neural net accepts the input observation and generates a transition probability
distribution over the next nodes. Each node on the other hand yields an action distribution. The
neural network serves therefore as a coupling structure, tying observations and actions more closely
together. The main idea is presented in Figure 1.7.

20

1.8 Reasons and intuition

Figure 1.7: Main approach for integrating perception and planning. A neural network following the
multi-layer perceptron architecture is embedded into the node of a graph. The network
accepts a sample of observation from a continuous space and creates a probability distribu-
tion over next nodes. Each next node itself outputs a distribution over actions from which
one concrete action will be sampled and carried out.

Such an approach can be used in problems with continuous observations, as well as in problems with
very high-dimensional discrete observations. The scaling to very high-dimensional inputs is done with
the help of encoders that compress the input into a lower-dimensional latent space.
A new algorithm is proposed: Continuous Observation Graph Neural Net-based Direct Cross-

Entropy policy search, short COGNet-DICE. It is built using ideas from direct cross-entropy policy
search methods combined with neural network classifiers. The algorithm is applied on a moving source
localization problem with continuous observations to investigate its properties and compare it to other
state of the art solutions. Subsequently it is shown how the new algorithm scales well to very high-
dimensional discrete visual inputs with the help of Variational Autoencoders.

1.8 Reasons and intuition

We presented some of the ideas behind the new approach without justifying them from a deeper, more
visionary perspective. Some still standing questions are: Why have such an approach to begin with
? What is the reason for having graphs ? Why embed neural nets in their nodes ? Why have action
distributions also embedded in their nodes ? To this there can be multiple explanations from different
points of view.
Lets begin with an intuition from a biological standpoint. We can imagine that the biological brain

is a conglomerate of very dense neurons packed in a small volume we call skull. They are from birth
allocated to already predefined centers of the brain. There exist multiple dedicated centers responsible
for different types of skills. However, these centers still have to be tuned by training from an early
age. Children try and fail at many tasks in order to fine-tune the simplest of skills, such as walking for
example. When an action is successful, those neurons that were active during its execution strengthen
the connections between their synapses, such that the behaviour that led to success is reinforced. As

21

1 Introduction

suggested by [Lake et al., 2017] the brain has a modular structure and there exist components such
as attention and perceptual blocks that serve as dispatchers, deciding what brain centers to activate
and orchestrate. Once a certain center is activated, it performs the action it was fine-tuned to do,
and passes the control to other centers based on the new feedback. A high-level impression about how
the brain has a modular structure, with each component having submodular components within it is
presented by Figure 1.8.

Figure 1.8: Brain centers dedicated for different tasks reinforce connections between themselves. Each
component is a black box abstraction that has more lower level circuitry inside.

From a mathematical standpoint, the synapses inside brain centers are emulated by the weights
of the neural nets inside the nodes; and the edges of the graph can be thought of as longer neurons
that connect different brain centers together. Each observation has to be allocated a pipeline that
will process it. The pipeline is the entire graph of nodes and each node is a specialized center in the
pipeline. A node will take the observation and bring it to a higher-dimensional hyperplane represented
by the hidden layer of the neural net inside the node. The hyperplane is more useful to classify the
observation because data is more easily separable in higher dimensions (see Figure 1.9). This idea
comes mainly from Support Vector Machines (SVMs) and is called the "kernel trick". Another aspect
that deserves mentioning is that a hidden layer with many neurons is very powerful in the sense that
each neuron acts like a basis function. It performs linear as well as nonlinear calculations on the inputs
it receives as presented in Figure 1.10. Many such neurons stacked together are capable of learning
very complex nonlinear models. We can either have more neurons in one hidden layer, or less neurons
but on multiple layers. Multiple layers is essentially better because it means we apply the abstraction
principle, in other words connecting building blocks together, where each block builds higher learning
representations on top of what the other block has learned. On the other hand, one of the main
theorems in artificial intelligence says that it is possible to represent any function with just one hidden
layer containing an infinite number of neurons. We will pick for simplicity one hidden layer with 10
times as many neurons as the length of the input sample used. Once the observation is classified, the
last output layer of the perceptron neural net serves as a dispatcher, or more technically: a multi-class
classifier that decides what next node in the pipeline is best for handling the next observation further.
Therefore each node acts as a specialist in the overall pipeline represented by the graph: at first the
node acts on the current observation and then it decides what node is responsible next for the new

22

1.8 Reasons and intuition

observation.

Figure 1.9: Nonlinear split in a lower-dimensional space vs linear split in higher-dimensional space. A
circular model would be necessary in the 2D cartesian coordinate system, whereas in 3D a
simple linear plane will suffice.

Figure 1.10: Nonlinearity applied to a linear combination of weighted inputs leads to complex and
powerful function approximations. The dot product can be thought off as the simplest
kernel there is. Other popular kernels from Support Vector Machines theory are: the radial
basis function (RBF), polynomial kernel, etc. The nonlinearity side can be accomplished
by many functions as well, such as: the sigmoid function, tanh, leaky ReLU, etc.

23

2 Background Theory

This chapter will first give an in-depth explanation of the important theoretical topics used in this work,
namely: Decentralized Partially Observable Markov Decision Processes, Cross-Entropy Optimization
and Variational Autoencoders.
An extra implementation topic will also be presented, specifically the main ideas of the Graph-based

Direct Cross-Entropy algorithm for policy search, or short G-DICE. This algorithm serves as a baseline
for further development and adaptation to a deep learning context.

2.1 Decentralized-POMDPs

The Decentralized Partially Observable Markov Decision Process is a principled framework for reason-
ing about multiple agents cooperating at a task when there is uncertainty in the state of the world they
observe and act upon. For more insight into the topic of Dec-POMDPs refer to [Oliehoek et al., 2016].
The section below will however also list the most important information to have a conceptual under-
standing of Dec-POMDPs. The Dec-POMDP will be formally defined and then its complexity will be
mathematically analyzed, followed by a discussion about different types of inter-agent communication.
More formally, a Dec-POMDP is a tuple of the form 〈Ag, S,A, T,R, Z,O〉, where:

• Ag = {1, ..., n} is the set of agents

• S is a finite set of world states

• A = ×iAi is the set of joint actions, each agent i performing an action from set Ai

• T is the transition function defined as T : S×A→ P (S), mapping state-action pairs to probability
distributions over next states

• R is the reward function defined as R : S ×A→ R, mapping state-action pairs to a real number
that quantifies their utility

• Z = ×iZi is the set of joint observations, each agent i receiving an observation from set Zi

• O is the observation function defined as: O : S × A → P (Z), mapping state-action pairs to
probabilities over joint observations

• b ∈ P (S) is the belief over states. b0(s0) , P (s0) is the initial state distribution at time t=0

• h is the horizon of the problem, i.e. the number of time steps the agents will interact with the
world

In a Dec-POMDP joint actions are taken by the agents at = 〈a1,t, . . . , an,t〉 at each time step t. The
actions taken cause a state transition of the environment according to a function T . The environment
then responds with joint observations zt = 〈z1,t, . . . , zn,t〉 according to some observation function O.
Each agent knows only about its own action ai,t it took and its own observation zi,t that came as a
result of the state transition. However all agents receive the same reward rt = R(st, at).
There are two important concepts that accompany the Dec-POMDP definition: histories and policies.

Definition 2.1.1. A local action-observation history, or AOH for an agent i is a sequence of actions
taken and observations received by that agent at all time steps t = 0, . . . , h

24

2.1 Decentralized-POMDPs

Mathematically we will denote it as:

~pi,t = (ai,0, zi,1, . . . , ai,t, zi,t) (2.1)

The AOH can also be thaught of as a concatenation/tuple of two separate histories, namely the
observation history:

~zi,t = (zi,1, . . . , zi,t) (2.2)

and the action history:
~ai,t = (ai,0, . . . , ai,t) (2.3)

All the information an agent might need to learn is carried within an action and observation history,
and each agent has to come up with its own local policy based on these.

Definition 2.1.2. A local policy πi for an agent i is a mapping from local observation histories to
actions.

πi : ~Zi → Ai (2.4)

All agents act together according to their respective local policy, which leads to the emergence of an
overall joint policy.

Definition 2.1.3. A joint policy π is a tuple of the form 〈π1, . . . , πn〉, such that the local policy πi of
each agent i maps local observation sequences to the next local action.

π : ~Z → A (2.5)

The overall goal is to find an optimal joint policy π∗ out of all joint policies π that maximizes the
expected sum of discounted rewards over time, which represents the value of the joint policy:

V (π) = E

[
h−1∑
t=0

γtR(st, at)|b0, π

]
(2.6)

The expectation is with respect to the sequences of states and executed joint actions. Since we are
dealing with a partially observable system, where the state is not uniquely identifiable, we use the
term of belief over many states. Hence the variable b0 in the above formula represents the initial belief
distribution from which the state s0 is drawn.
Previous and future notation that will be used throughout this thesis is consolidated in Table 2.1

Table 2.1: Notation summary.

Notation Definition Meaning

zi,t Local observation of agent i at time t
~zi,t (zi,1, zi,2, . . . , zi,t) A length-t local observation sequence of agent i
zt 〈z1,t, z2,t, . . . , zn,t〉 Joint observation at time t; tuple of local observations
~zt 〈~z1,t, ~z2,t, . . . , ~zn,t〉 A length-t joint observation sequence; tuple of local sequences

ai,t Local action of agent i at time t
~ai,t (ai,0, ai,1, . . . , ai,t) A length-(t+ 1) local action sequence of agent i
at 〈a1,t, a2,t, . . . , an,t〉 Joint action at time t; tuple of local actions
~at 〈~a1,t,~a2,t, . . . ,~an,t〉 A length-(t+ 1) joint action sequence; tuple of local sequences

s (s0, s1, . . . , sh−1) Sequence of states at different time steps t < h

To be able to appreciate how hard the problem actually is we will discuss some complexity results
related to Dec-POMDPs. In order to avoid confusions, the algorithm complexity will be denoted
through big O notation, while O is reserved for the observation function.

25

2 Background Theory

A Dec-POMDP is a very flexible framework, however the flexibility comes at a price. At a specific
timestep t, there are (|Ai| · |Zi|)t action-observation combinations for an agent i. This means that for
an agent i, the number of sequences is:

h−1∑
t=0

(|Ai| · |Zi|)t (2.7)

Applying the geometric progression formula where the ratio absolute value is greater than or equal to
one (|ratio| ≥ 1) we get:

h−1∑
t=0

(|Ai| · |Zi|)t =
(|Ai| · |Zi|)h − 1

(|Ai| · |Zi|)− 1
(2.8)

total number of action-observation histories that need to be tracked.
Raising the number of possible actions to the total number of observations an agent could potentially

receive will give us the number of policies to be evaluated for one agent:

|Ai|
|Zi|

h−1

|Zi|−1 (2.9)

Assuming n agents that are heterogeneous, we get the number of joint policy evaluations in case of an
exhaustive brute-force algorithm to be:

O

(
|A∗|

n(|Z∗|h−1)
|Z∗|−1

)
(2.10)

where |A∗| and |Z∗| stand for the largest individual action and observation sets. The cost of evaluating
one joint policy is:

O(|S| · |Z∗|nh) (2.11)

Therefore, total cost is derived by multiplying (2.10) and (2.11):

O

(
|A∗|

n(|Z∗|h−1)
|Z∗|−1 · |S| · |Znh∗ |

)
(2.12)

As we can see in expression (2.12), the first product term (from equation (2.10)) has an exponent which
itself involves a power of h. Therefore we say that a Dec-POMDP has double exponential complexity,
and that it is double exponential in the horizon h.
Regarding the communication between agents, there are multiple Dec-POMDP variations. In its

most general form, we assume there is no communication between the agents. In this situation,
complexity is NEXP, or double-exponential as stated previously (see also [Bernstein et al., 2002]). In
case we assume complete communication between the agents, the system effectively boils down to a
POMDP structure. A POMDP was shown to be PSPACE-complete (see [Papadimitriou and Tsitsiklis,
1987]). There can also be hybrid scenarios, where the agents can communicate, but only periodically,
i.e. after a certain number of time steps less then the total horizon. This is a reasonable structural
assumption to make in order to reduce the complexity of the problem, and it is employed by people in
teams as well in the form of exchange meetings. In this case, the system is decentralized, but only for a
certain period of time, after which all the individual beliefs of the agents are merged into a centralized
belief.

2.2 Cross-entropy optimization

Cross-entropy optimization is a method of finding a vector argument ~x from a hypothesis space H that
maximizes some performance metric M : H → R

~x∗ = argmax
~x∈H

M(~x) (2.13)

26

2.2 Cross-entropy optimization

For details on cross-entropy refer to [De Boer et al., 2005]. The following section will touch however
on the essentials necessary for this thesis. At first, the notion of cross-entropy will be arrived at theo-
retically through an example-proof in the context of how learning happens in a Frequentist approach,
and afterwards it will be shown how the cross-entropy method for policy search looks like in practice
and what concrete steps it entails.
There are many ways in which one can conceptualise and arrive ultimately to the concept of cross-

entropy (CE). There is however one interesting proof in the form of an example that gives a big picture
and ties together many core concepts used in this thesis:

• Maximum Likelihood Estimation, or MLE

• Kullback-Leibler divergence, or KLD

• Information and Entropy

Example 2.2.1. Assuming a Frequentist, Maximum Likelihood Estimation approach to learning, our
task is to maximize the likelihood of seeing the training data X by changing the parameter θ:

max logP (X|θ) (2.14)

We will designate the optimal θ as θ̂ and express it as:

θ̂ = argmax
θ

P (X1:n|θ) = argmax
θ

logP (X1:n|θ)

= argmax
θ

[
1

N

N∑
i=1

logP (Xi|θ)−
1

N

N∑
i=1

logP (Xi|θ0)

]

= argmax
θ

1

N

N∑
i=1

log
P (Xi|θ)
P (Xi|θ0)

(2.15)

where θ0 is the parameter of the true underlying model governing the process that we are analyzing.
Note that we were allowed to add a log operator before P (X) in the first line of (2.15) and subtract
1
N

∑N
i=1 logP (Xi|θ0) in the second line of (2.15) because argmax is an operator that remains invariant

when we scale a function, as well as when we remove a bias from it.
Moving on with the proof, we will apply next the law of large numbers and get:

lim
N→∞

argmax
θ

1

N

N∑
i=1

log
P (Xi|θ)
P (Xi|θ0)

= − argmax
θ

∫
log

P (X|θ0)
P (X|θ)

P (X|θ0)dX

= argmin
θ

∫
log

P (X|θ0)
P (X|θ)

P (X|θ0)dX

(2.16)

where log P (Xi|θ0)
P (Xi|θ) is what we call the Kullback-Leibler Divergenge, or KLD between the distributions in

the numerator and the denominator. An insightful fact is that the problem of computing the maximum
likelihood estimate is equivalent to minimizing the KLD between the true model distribution from which
the input X stems (X ∼ P (X|θ0)), and the learned distribution that we compute iteratively P (X|θ).
If we go one step further and apply the logarithm quotient rule we get:

(2.16) = argmin
θ

[∫
P (X|θ0) logP (X|θ0)dX −

∫
P (X|θ0) logP (X|θ)dX

]
(2.17)

where
∫
P (X|θ0) logP (X|θ0)dX represents the information in the world that can theoretically be

learned and
∫
P (X|θ0) logP (X|θ)dX is the information in our model. The negative of this information:

−
∫
P (X|θ0) logP (X|θ)dX is the cross-entropy term that we tried to arrive at (Incidentally, notice that

the prefix "cross-" can be related to the fact that θ0 and θ are juxtaposed inside the integral). It is in
our interest to minimize the cross-entropy as much as possible to get as close as possible to the total
information objectively available in the world:

∫
P (X|θ0) logP (X|θ0)dX 4

27

2 Background Theory

Cross-entropy (CE) is an important methodology of estimating the probability of rare events and
optimize combinatorial problems (see [De Boer et al., 2005]). In this work we will use it as a means of
finding good Dec-POMDP policies, which is in essence a combinatorial problem. The CE method for
searching policies consists of 2 phases (see also Figure 2.2 for illustration):

1. Sample a random variable X from a parametric distribution f

2. Take Nb best samples and use these to update the parameters θ of function f

In order to avoid issues with local optima, a smoothing procedure may be used:

θt+1 = αθt+1 + (1− α)θt (2.18)

where α is a specified learning rate. In our case the algorithm will run iteratively a certain predefined
number of steps Nk. An alternative could be to run the algorithm until no improvements in the policies
occur for a certain number of successive iterations. Since this is an anytime algorithm, it can also be
stopped after a random period of time.

2.3 Variational Autoencoders

Variational Autoencoders are a class of generative models specifically designed for learning latent rep-
resentations of a continuous or discrete input X. For a detailed analysis of this topic check [Doersch,
2016]. The content in this chapter however will be self-contained in explaining the most relevant aspects
of Variational Autoencoders in the context of image processing and computer vision. The initial aim
is to understand the placement of Variational Autoencoders in the broader class of generative models.
Subsequently, the goal is to theoretically prove how learning is accomplished in a Variational Autoen-
coder such that the compression, data augmentation and noise robustness aspects are emphasized and
understood in the context of many flying agents analyzing a 2D image scene.
Generative models are a useful emerging class of networks that can generate function distributions

of the form P (X|Y = y), which are called density functions. There are 2 main types of generative
models: the ones that explicitly model the density function and the ones that elicit an implicit density
function.
Implicit density estimation models will not be used in this work, but it is worth mentioning that they

subsume the ubiquitous Generative-Adversarial Networks. Shortly explained, in this case we have a
Game Theory type of setting with 2 players: a generator trying to generate images as close as possible
to realistic images, and a discriminator trying to discern whether the generated images are real or fake.
Therefore, an implicit density function arises in the process of the Generator network trying to deceive
the Discriminator counterpart into believing that the generated data is actually taken from real life,
and not artificially created.
The explicit density generative models on the other hand are more relevant to what we will use,

and here we can distinguish between: tractable density calculation models and approximate density
estimation models.
Some of the most popular models from the tractable density class at the moment of writing this

thesis are: PixelCNN [Van den Oord et al., 2016] and PixelRNN [Oord et al., 2016]. What they do at
their core is generate a probability distribution of the type:

P (X) =
n∏
i=1

P (Xi|X1, ..., Xi−1) (2.19)

where P (X) represents the likelihood of an image X, and P (Xi|X1, ..., Xi−1) represents the probability
of the pixel value at index i to be Xi, given that the previous pixels seen had values X1, ..., Xi−1. In
other words, it is a similar problem with the one from classical information theory, when trying to
predict the next bit given the previously seen bits. In this case however, our bits are actually pixels,
and we try to predict the next pixel in an image given the previous ones. This type of modelling suffers
from being too slow in practice, especially PixelRNN networks. Networks inspired from PixelCNN try

28

2.3 Variational Autoencoders

to mitigate this prediction speed issue, but the problem still persists, since we still have to exhaustively
visit all pixel groups sequentially in order to make the next prediction.
The next class, i.e. approximate estimation models is more successful at overcoming the prediction

speed issue. They can be divided into: Markov Chains (for example: Boltzmann Machines) and
Variational Autoencoders. What presents special interest however for this thesis are the Variational
Autoencoders (VAEs) and a simpler subtype of these called Autoencoders (AEs). We will go into more
depth about VAEs, since they are more generic than AEs and will enlighten other aspects about later
algorithmic implementations for this thesis.
VAEs consist of 2 conceptual components: an encoder and a decoder, as can be seen in Figure 1.5.

Simply put, the encoder tries to compress an input X into a latent space L. The decoder on the
other hand samples the latent function to produce an output Y , which will look as if it stems from
the same distribution as X. The Autoencoder will try to make Y indistinguishable from X, while the
Variational Autoencoder will be more creative and generate a Y that is not exactly X, but rather with
novel features, similar in nature to what the input X could have exhibited.
More formally, Variational Autoencoders define a density function of the form:

Pθ(X) =

∫
Pθ(L)Pθ(X|L)dL (2.20)

where X is the image and L is a latent variable representing features used to generate X (ex: how
much green there is in an object, what is the orientation of the object in the image etc.)

• Pθ(X) represents the data likelihood

• Pθ(L) is the set prior, which is a Gaussian many times for convenience

• Pθ(X|L) is the conditional distribution showing how the input depends on the latent variable.

Distribution Pθ(X|L) is computed with the help of a neural network, more concretely: by the decoding
network in the VAE.
According to Bayes’ formula, we can compute also the posterior, i.e. the encoding distribution as:

Pθ(L|X) =
Pθ(X|L)Pθ(L)

Pθ(X)
=

Pθ(X|L)Pθ(L)∫
Pθ(X|L)Pθ(L)dL

(2.21)

Because of the intractable integral in the denominator, the posterior is also intractable. Hence, another
neural network will be necessary to approximate it as well, and it is called the encoder network in the
VAE. The encoder defines a distribution Qψ(L|X) that approximates the true posterior distribution
Pθ(L|X) from equation (2.21):

Qψ(L|X) ≈ Pθ(L|X) (2.22)

Statement 2.3.1. We will obtain an encoding distributionQψ(L|X) by trying to optimize a variational
lower bound (hence the title: "Variational" AEs instead of simply AEs).
The aim of the following proof of the above statement is to mathematically justify the presence of

the 2 physical networks: the encoder and decoder, and emphasize the aspect of approximation that the
overall VAE gives as a feature to the COGNet-DICE algorithm. Both the employment of cross-entropy
optimization and variational autoencoding place COGNet-DICE in the class of approximate planning
algorithms.
We start by expressing the log-likelihood of the input and applying Bayes’ formula on it subsequently:

logPθ(Xi) = E
L∼Qψ(L|Xi)

[logPθ(Xi)] = E
L

[
log

Pθ(Xi|L)Pθ(L)

Pθ(L|Xi)

]
(2.23)

Next we apply the trick of multiplying and dividing with a term in order to inject distribution Q into
the derivation process:

29

2 Background Theory

(2.23) = E
L

[
log

(
Pθ(Xi|L)Pθ(L)

Pθ(L|Xi)
·
Qψ(L|Xi)

Qψ(L|Xi)

)]
(2.24)

The step above mathematically explains the presence of a lossy, approximating encoder Qψ(L|X) and
hence, it represents one of the approximation steps. Next, purposefully combining convenient pairs
together will lead us to:

(2.24) = E
L

[
log

(
Pθ(Xi|L) · Pθ(L)

Qψ(L|Xi)
·
Qψ(L|Xi)

Pθ(L|Xi)

)]
= E

L

[
log

(
Pθ(Xi|L) ·

(
Qψ(L|Xi)

Pθ(L)

)−1
·
Qψ(L|Xi)

Pθ(L|Xi)

)]

= E
L

[
logPθ(Xi|L)− log

Qψ(L|Xi)

Pθ(L)
+ log

Qψ(L|Xi)

Pθ(L|Xi)

]
= E

L
[logPθ(Xi|L)]− E

L

[
log

Qψ(L|Xi)

Pθ(L)

]
+ E

L

[
log

Qψ(L|Xi)

Pθ(L|Xi)

]
= E

L
[logPθ(Xi|L)]−DKL [Qψ(L|Xi)||Pθ(L)] +DKL [Qψ(L|Xi)||Pθ(L|Xi)]

(2.25)

where DKL stands for the Kullback-Leibler Divergence.

Note the following interesting facts about the result:

• The term EL [logPθ(Xi|L)] is computed by the decoder network.

• The term DKL [Qψ(L|Xi)||Pθ(L)] has a closed form, since both distributions: the conditional
Qψ(L|Xi) and the prior Pθ(L), are purposefully set to be convenient functions for which we
know how to derive analytical properties. Gaussian functions are typically used in practice.

• The third term DKL [Qψ(L|Xi)||Pθ(L|Xi)] is intractable since Pθ(L|Xi) is intractable (because
of the integral in equation (2.21)). However, we can take advantage of the known fact that the
KL Divergence is always non-negative (i.e. ≥ 0).

Therefore, we can say that what we started with, i.e. log(Pθ(Xi)) is greater than or equal to some
lower bound B:

B(Xi, θ, ψ) = E
L

[logPθ(Xi|L)]−DKL [Qψ(L|Xi)||Pθ(L)] (2.26)

4

More explicitly, we have the following expression to optimize with respect to θ and ψ:

log(Pθ(Xi)) ≥ E
L

[logPθ(Xi|L)]−DKL [Qψ(L|Xi)||Pθ(L)] (2.27)

This therefore represents another approximation step. If we now optimize the lower bound, we will
find the optimal parameters θ̂ and ψ̂. Using ψ̂ we will be able to compute Qψ̂(L|Xi) as a good
approximation for the intractable true posterior Pθ(L|Xi). Using θ̂ we will be able to find a good
decoding distribution Pθ̂(Xi|L) that reconstructs the input X.
Now that we proved how VAEs work internally, one can hopefully have an intuition about why for

example Q(L|X) can be useful for other tasks. We can treat it as a distribution that intelligently
compresses the input and be able to sample from it instead of from the high-dimensional images when
it comes to planning tasks. For tasks involving teams of many agents, compression is very important
to speed up the training procedure. Another aspect is that with a compressed variable L, the VAE
can decode different outputs for a certain ground truth input. This is extremely useful for data
augmentation purposes. We can generate a training dataset with which we can train other neural
networks and make them more robust to noise. This is extremely important in transfer learning, when
the agents can be trained in a simulator and be able to cope with noisy signal measurements in the
real world where they are embodied as physical robots.

30

2.4 G-DICE

2.4 G-DICE

This section explains the G-DICE algorithm: "Graph-based Direct Cross-Entropy" search, which is
the main methodology for searching policies in this work. A short discussion will be carried on the two
important graphical controller types used in engineering and about which type requires less storage
theoretically. The second part will be about how G-DICE contributes to the shaping of these controllers
through learning the parameters governing node transition and action selection.
The fun fact about the "G-DICE" acronym is that it actually carries a meaning: this algorithm

is essentially an evolutionary algorithm in nature, and hence: "throwing the dice" analogy. The
D stands for "direct" and describes the fact that we will do a direct search on the policy space,
without attempting to permanently prune it. This is note-worthy and speaks for the importance of
this algorithm to handle large state spaces. Other methods for example rely on permanently pruning
the space to arrive at smaller sizes they are able to handle.
Before diving into the steps of the algorithm, let us have a short introduction into the type of graphs

we will make use of. For each agent in the system, we will define a finite state automaton (short FSA).
The FSA will be used to learn the controller for each agent, in other words the block dictating the
local policy of the agent. There are 2 main classes of FSAs, namely: the Moore machine and the
Mealy machine. Any controlling task we might think of that can be modeled using a Moore machine,
does have an equivalent Mealy counterpart. The difference between them is how they model outputs
and node transitions. In a Mealy machine, an input causes a node transition and generates an output
during the node transition itself. The Moore machine however, does not generate the output during
the node transition, but rather in the node itself. Figure 2.1 emphasizes precisely this aspect. Because
of this aspect, a Mealy machine does actually require less number of nodes on average, therefore less
storage. However, this is an insignificant gain for the purposes of this thesis because we will consider a
small number of nodes anyway and therefore a Moore machine is preferred because of its more intuitive
nature. In other situations however, when policy controllers with a lot of nodes are unavoidable, we
might be able to consider Mealy Machines to save space. At an implementation level, this means that,
for the purposes of this thesis, the neural net classifier is an object that is assigned as an attribute to
the node object of the graph. In a Mealy scenario, the classifier would be assigned as an attribute to
the edge object of the node.

(a) Moore (b) Mealy

Figure 2.1: Moore vs Mealy Machines. In a Moore machine the output is placed in nodes. In a Mealy
machine the output is placed on node transitions. Mealy machines have a lower space
complexity on average, but this effect is negligible for our purposes.

Moving on to the G-DICE algorithm itself, we can say that its purpose is to find the policy controllers.
More specifically: we set the number of nodes we want the controllers to have, and the G-DICE
algorithm should build the action distributions of each node and the next node transition distributions.
A controller is initialized such that there is a uniform distribution in every node for what actions to

31

2 Background Theory

take, and a random next node classifier represented by arbitrarily weighted edges between the nodes.
G-DICE has the following gist:
1. We create a graph for each agent containing Nn nodes.

2. Each node of the graph outputs a distribution over actions that the agent will stochastically
sample and carry out.

3. Once an action is chosen and performed by each agent, a joint observation is received.

4. Based on the current node qi,t and observation zi,t, each agent will transition to its corresponding
sampled next node qi,t+1.

5. Every G-DICE iteration builds many Ns policy samples. A policy sample is a deterministic
controller where a deterministic action is assigned to each node and a deterministic next node is
assigned for each (node, observation) pair.

6. Each controller is evaluated Nsim times to calculate the policy average reward, which represents
the policy value.

7. According to the cross-entropy method, the update of the action distribution and next node
classifier is done using only a subset Nb of all samples that meet a quality standard Vw.

8. The procedure by which action distribution update is done is MLE (maximum likelihood estima-
tion) in the form of frequency count of the best actions that were taken in their corresponding
nodes from the Nb best samples.

9. The next node distributions must also be updated by counting the discrete observations received
in their associated nodes, from the best Nb samples.

10. The update is followed by a distribution smoothing procedure to avoid degeneration to local
optima.

Note an important fact about what steps are impractical for robotics applications and therefore
addressed by this thesis. Step 9 says it is necessary to update the next node distribution by counting
observations. This implies that observations are categorized easily into simple, uniform, countable in-
tegers: an agent can observe something that could be labeled as 0, 1, 2,... etc. In everyday applications
this is however rarely the case. Signals such as electromagnetic waves for example measured by analog
sensors are intrinsically continuous and cannot be simply binned into predefined categories. The agent
has to learn on its own how to create non-uniform binning and clustering. Hence, for our purposes, a
frequency count approach is only useful in the case of actions, not in the case of observations. In other
words, we can keep step 8, but not step 9 from the above recipe.
This basic routine of G-DICE will be performed many times: Nk iterations. In each iteration a

number Ns of policy samples is taken. These samples are evaluated and only the first Nb best samples
are retained at the end of the iteration step in order to improve the policy. The improvement results
in a policy threshold value Vw that is supposed to be overcome in the next iteration steps. Each time
the threshold is overcome, it gets updated to an even higher value. This monotonically increasing
Vw ensures the policy improvements over time. Figure 2.2 shows this process, namely how the green
samples that overcome the Vw,1 barrier are used to improve this barrier to Vw,2, such that at the next
iteration, green samples will be the ones that overcome Vw,2 and so on. The black samples are the
ones that will not make it in the list of best samples with Nb elements. In time, the algorithm will
learn to put more emphasis on those regions that generate good green samples, and converge towards
sampling from local maxima regions and hopefully around the global maximum peak. The algorithm
will store inside the iteration loop the new best value Vb and new best policy such that this becomes
an anytime algorithm, i.e. it will return a valid solution to the task even if it is interrupted before it
is programmed to officially end.
One point to note is that there might be a time when no new sample X can overcome the threshold

Vw,k, after many k iterations. This does not necessarily mean that the global maximum has been
reached. The cross-entropy method is still a sub-optimal approximate algorithm. We can only hope

32

2.4 G-DICE

to find very good solutions, but there is no guarantee we will find the best solution. To increase the
chances of finding good solutions, especially when no new X can surpass Vw, we have to increase the
sampling variance and employ exploration techniques that might discover new interesting regions in
the space of policies to sample from.

(a) One Iteration (b) Two Iterations

Figure 2.2: G-DICE policy search. Thick, dashed, green samples are used to increase the threshold Vw
for future iterations. Thin, solid, black samples are below the current Vw and therefore do
not contribute to policy improvement.

To reiterate and clarify, G-DICE is detailed in Listing 1. The algorithm requires the number of
controller nodes Nn to be given by the user. Typically all agents have the same Nn, but policies may
exhibit varying complexity especially for heterogenous agents, and so the user can specify a different
Nn for each agent. Additionally, the user has to specify how many iterations Nk will the algorithm
use to update the controller graphs, how many policy samples Ns will be sampled each iteration, how
many of the best samples Nb will be kept for the update. The policy update at the end of the iteration
requires the specification of a learning rate α, which describes the step size in the update direction.
The evaluation of a policy is done through specifying Nsim, i.e. the number of simulations to carry
based on which to calculate the policy value. Each simulation runs a specified number of h time steps
and the reward of each time step is discounted with a specified parameter γ.
The algorithm starts with the initialization of all parameters in lines 1 to 6. Line 1 initializes the

best policy object as an empty object. Line 2 initializes the variable Vw, i.e worst value based on
which filtering of policies will be done. Additionally, line 2 also initializes the best value Vb of the
best policy. Line 3 starts the initialization process of all distributions for all agent controller graphs.
Line 4 initializes the parameters for the action distributions θ(i)(a|q)0 in all the nodes of the controller

corresponding to agent i. Line 5 initializes the parameters for the next node distributions θ(i)(q
′ |q,z)

0

for each node in the controller corresponding to agent i.
After initialization the algorithm starts looping through a predefined number of iterations Nk as

presented by line 7. Each iteration has the goal of performing a policy update at the end. In line 8 a
container is defined for storing the policies that meet the hard quality requirement of surpassing Vw.
Line 9 defines another container that will store the subset of best Nb policies which will be used for
the policy update procedure at the end of each iteration. Every iteration will build Ns policy graph
samples and evaluate them. Lines 12 and 13 build controller graphs according to custom sampling
techniques and then the controllers are evaluated in line 14. The evaluation procedure will run through
the predefined horizon h, i.e. total number of time steps the agents interact and will calculate the
cumulative rewards using a discount factor γ according to equation (2.6). Nsim cumulative rewards
will be calculated and used to compute one single average reward/policy score. Only if the evaluation
score is greater than the threshold Vw, the data will be collected for later use as presented by lines 15
to 17. If the evaluation score is greater than all scores seen in past iterations, then this is registered
as the new best value and the corresponding best policy is also updated as shown by lines 18 through

33

2 Background Theory

21. After the Ns sampling iterations have elapsed, the list of best policies is populated with the top-
performing Nb samples as seen in line 23. New quality standard for the future iteration is set in line
25. The iteration is ended by performing the policy update through maximum likelihood estimation
of the action distribution parameters in line 27 and next node distribution parameters in line 29 using
the best collected samples. Lines 28 and 30 are additional smoothing steps to avoid degeneration to
points of local optima. In a smoothing process the idea is to take only a small step in the direction
of the updated distributions. After all iterations, the algorithm returns the best seen policy and its
value, which may or may not be the optimal solution. There is no optimality guarantee, but there is
a high likelihood of finding very good solutions.

Algorithm 1 G-DICE with deterministic policies
Input: Number of nodes (Nn), Number of iterations (Nk), Number of samples (Ns), Number of best

samples (Nb), Number of evaluation simulations (Nsim), Learning rate (α), Discount factor (γ),
Number of lookahead steps (h)

Output: bestPolicy, bestV alue
1: bestPolicy ← ∅
2: Vw, Vb ← −Infinity . Worst and best values are very small initially
3: for i← 0, ..., numAgents do
4: θ

(i)(a|q)
0 ← UniformDistribution(),∀q

5: θ
(i)(q

′ |q,z)
0 ← UniformDistribution(), ∀q, z . q′ means next node, z is the observation

6: end for
7: for k = 0, ..., Nk − 1 do
8: storageList← ∅
9: bestPolicies← ∅

10: bestV alues← ∅
11: for sample = 0, ..., Ns − 1 do
12: deterministicAction← Sample(actionDistribution),∀q
13: deterministicNextNode← Sample(nextNodeDistribution), ∀q, z
14: reward = Evaluate(h,Nsim, γ)
15: if reward > Vw then
16: storageList← tuple(deterministicAction, reward, deterministicNextNode)
17: end if
18: if reward > Vb then
19: bestPolicy ← tuple(deterministicAction, deterministicNextNode)
20: Vb ← reward
21: end if
22: end for
23: bestPolicies = Sort(storageList)[0 : Nb] . Sort and take best Nb elements
24: bestV alues← getRewards(bestPolicies)
25: Vw ← min(bestV alues)
26: for i← 0, ..., numAgents do
27: θ

(i)(a|q)
k+1 ←MLE(bestPolicies) ∀q

28: θ
(i)(a|q)
k+1 ← α ∗ θ(i)(a|q)k+1 + (1− α) ∗ θ(i)(a|q)k ∀q . Smoothing

29: θ
(i)(q

′ |q,z)
k+1 ←MLE(bestPolicies) ∀q′ , z

30: θ
(i)(q

′ |q,z)
k+1 ← α ∗ θ(i)(q

′ |q,z)
k+1 + (1− α) ∗ θ(i)(q

′ |q,z)
k ∀q′ , z

31: end for
32: end for
33: return bestPolicy, Vb

34

3 Related Work

This chapter will present the state of the art in the field of decentralized systems with cooperating
agents. One aspect discussed will be how the framework of reasoning about these systems, namely
Dec-POMDPs are solved, and what methods are used to find optimal, as well as sub-optimal solutions
to the policy search problem. Another discussion point will treat the observation side of the problem
and how to scale these methods to higher-dimensional inputs.

3.1 Solving Dec-POMDPs

There are two ways in which decentralized policies can be found: either using exact algorithms or
approximate algorithms. Exact algorithms have the advantage that they guarantee to find an optimal
policy. One example would be a plain brute force, exhaustive search of any possible combination of
random variables in the space of random variables considered for the search. This would guarantee
finding the optimal solution, but for certain problems could take more time than the current age of the
Universe. To have a better intuition about the magnitude: some problems have a search space bigger
than the total number of atoms in the Universe. Therefore, exact methods can be very costly, precisely
because of the fact that Dec-POMDPs are NEXP-complete. Nevertheless, given certain prerequisites,
it is still possible to successfully apply them on certain problems and in special situations.
Approximate algorithms are on the other hand more practical. They aim to find sub-optimal, but

empirically good solutions to problems for which they are specifically tailored to address and efficiently
approximate. The advantage is speed of computation at the expense of missing the best solution to a
problem.

3.1.1 Exact solutions

One of the important exact methods is Dynamic Programming. It is an approach that at its core
employs the idea of divide and conquer. The procedure is recursive and consists in going backwards in
time through a tree data structure and calculate the value of sub-trees, such that at each new iteration,
one is able to reuse what has already been calculated in the previous time step. By "value" we mean
the solution to the Bellman Equation:

V ∗(s, a) = E
s′∼b

[R+ γmax
a′

V ∗(s′, a′)|s, a] (3.1)

which states the Bellman optimality principle that: the optimal strategy is to select that action which
maximizes the expected future value R + γV ∗(s′, a′), whatever the initial state and decision are.
Dynamic Programming is a very popular and useful method for solving MDPs and POMDPs. In
the Dec-POMDP case however, this approach has limited use and can be applied only when certain
structural assumptions are made that reduce the Dec-POMDP to either a POMDP, or even MDP.
Such practices have been demonstrated in works such as [Hansen et al., 2004] and [Bertsekas, 2019].
A second exact method is called "heuristic search". In the context of Dec-POMDPs it is more efficient

than dynamic programming provided that we have good enough heuristics to guide the search. The
most popular algorithm for a single agent case is A*. The heuristic in this case is such a function that
consistently underestimates the total cost of taking an action. For the decentralized multi-agent case,
one of the most popular algorithms is an extension of the A* algorithm called Multiagent A* [Szer
et al., 2012].

35

3 Related Work

3.1.2 Approximate solutions

More promising however for practical applications are methods that approximately solve Decentralized
POMDPs. One such way is called: Bounded Dynamic Programming (or BDP) [Amato et al., 2007].
The idea here is to prune policies so that memory space is saved. Such an approach mitigates the main
issue of dynamic programming, which suffers from too much memory requirements. Approximation
comes from the fact that when we prune certain policies, we remove also optimal solutions to the
problem.
Another popular generic principle stems from game theory and consists in finding a local optimal

best response. The algorithm JESP: Joint Equilibrium-based search [Nair et al., 2003] implements
this principle of finding a best response policy for each agent by fixing the policies of some agents and
improving the policies of the remaining agents. There is also an exact version of this approach with
much higher computational effort.
Heuristic methods presented earlier can also have approximations. One example of approximate

heuristic search is the approximate version of Generalized Multiagent A* or GMAA* [Oliehoek et al.,
2008c]. Just like JESP, it also has an exact version. This approach in particular is a hybrid method
that combines ideas from game theory of solving collaborative Bayesian games (CBG) and heuristic
search like in Multiagent A*. In fact Multiagent A* is a special case of GMAA*.
A graphical approach based on trees, and not closed-loop graphs used in this thesis, is proposed

by [Lauri et al., 2019]. The method is based on caching policy values in the nodes of trees, so that
new policies are evaluated more quickly reusing previously computed results. To calculate the belief
over states, a Bayes filter is applied at each time step. Related to this approach, it can be noted that a
closed loop graph can be run for infinite horizon problems, whereas a tree data structure will be used
only for finite horizon problems. However, since most problems are finite horizon, or infinite horizon
with a discount factor that force policy values to converge, a tree structure applies very often.
One interesting approach that makes use of a new data structure is presented by [Pajarinen and

Peltonen, 2011]. The authors propose a more general design of a finite state controller (FSC), namely
periodic finite state controllers. A periodic FSC is composed of M layers and the constraint is that
nodes in one layer are connected only with nodes from the next layer, so no bypassing of layers is
allowed. Therefore, an ordinary FSC as we know it is a special case of a periodic FSC with just one
layer. The algorithm is able to handle infinite horizon policies by finding deterministic finite horizon
policies and then transforming them to infinite horizon through connecting the last layer of the FSC
with the first layer in a closed loop.
Another important approach that has been acclaimed for not pruning the search space is the Cross-

Entropy method. Cross-Entropy optimization over the space of policies has been used in works such
as [Oliehoek et al., 2008a] and [Oliehoek et al., 2008b]. In some experiments from [Oliehoek et al.,
2008a] the policies are not required to surpass a certain quality threshold value Vw, whereas in [Oliehoek
et al., 2008b] the filtered policies are forced to have better values each new iteration in order to ensure
policy improvements. Constantly increasing the threshold of policy values will result in higher quality
results and better convergence time, however may run into the risk of finding very few policies based
on which to do the improvement.
A graph-based implementation of the cross-entropy method is presented by [Omidshafiei et al., 2016].

The method also makes use of the idea of action aggregation, i.e. combining many low-level/primitive
actions into macro-actions. The framework is more general than a Dec-POMDP because it uses
automatically generated macro-actions, and is therefore called Dec-POSMDP: Decentralized Partially
Observable Semi-Markov Decision Processes. A natural continuation of this work to handle continuous
observations resulted in [Omidshafiei et al., 2017]. The authors use radial basis functions to cluster
the input into regions. Observations that belong to the same region will trigger similar behaviour of
the agent.
Another work that considers continuous observations and a graph implementation of cross-entropy

policy search is presented by [Clark-Turner and Amato, 2017]. Unlike [Omidshafiei et al., 2017], it
discusses the use of a beta distribution for dividing the input space into regions, and not radial basis
functions. It also does not explicitly consider macro-actions, and investigates only aggregation in
the observation space, not the action space. This work shows very good results when applied to a

36

3.2 High-dimensional observations in decision-making under uncertainty

one-dimensional source localization problem, but is not easily scalable to multi-dimensional inputs.
The cross-entropy graph-based approaches above use Moore controllers to represent policies. The

work of [Amato et al., 2010] on the other hand investigates Mealy controllers in centralized, as well
as decentralized POMDPs. The authors reach the conclusion that Mealy-based approaches are more
powerful than Moore counterparts based on the experimental results where Mealy controllers either
achieved equal solutions or outperformed Moore controllers of the same size. They claim it is relatively
easy to adapt existing graph-based solutions to use Mealy controllers. In addition, they confirm the
lower spatial complexity we also touched upon in the background theory chapter.

3.2 High-dimensional observations in decision-making under
uncertainty

One of the most ground-breaking work in the recent history of artificial intelligence (AI) comes from
the field of reinforcement learning (RL). With access to more computation power it became feasible to
adapt RL algorithms to higher-dimensional inputs. For example [Mnih et al., 2013] present a new way
of using reinforcement learning with only raw pixel inputs, coming from an Atari 2600 games emulator.
The inputs were not compressed with the help of encoders, however they were down-sampled to a size
of 84× 84× 4. The methodology relies on a so called Deep Q-Network (DQN) which accepts states as
input and outputs the action to take. This approach was only applied on games with a single agent.
A continuation of the work on DQN was done in [Mnih et al., 2015]. It was applied to many more

games (49 Atari 2600 games) and shown that it can outperform human expertise on the majority of
them. The experiments also revealed some of the shortcomings of the approach, namely: because the
frame in a game is high-dimensional and only a limited number of most recent frames is used to create
one input (m=4 frames), some games that have very sparse rewards still remain a challenge. Such an
example is "Montezuma’s Revenge", a game that requires very long sequences of actions and therefore
many frames stacked together to receive a single reward. The problem was not overcome even with the
important trick of experience replay, i.e. storing the successful episodes which bring the rare occasional
rewards and replaying them many times to the deep neural network.
Departing from the games environment into a simulation environment such that more sophisticated

actions from the continuous space are considered, accompanied by raw pixel input, [Lillicrap et al.,
2015] have proposed the DDPG: deep deterministic policy gradient algorithm. It uses the structure of
an actor-critic system, i.e. an actor component that outputs an action to take and a critic component
that evaluates the performance of the actor judging by the action it proposed and its result. It was
shown that on some tasks, having raw pixel input is better than processed lower-dimensional features.
Another work which also considers only a single agent and visual inputs is [Lange and Riedmiller,

2010]. It was inspired from the neural fitted Q-learning, or NFQ model by [Riedmiller, 2005]. Unlike
the previous work on Atari, this method does not accept raw observations, but rather compresses
them using a deep Autoencoder network. The authors also evaluate the generated features through 4
different criteria and provide valuable insight into the potential of Autoencoders for the reinforcement
learning applications. One aspect is that the state of the system is reliably captured by the feature
vectors. The second aspect is that noisy images taken at the same position of the agent have almost
the same exact latent representation, which allows the agent to reliably filter noise. Third is that close
by high-dimensional raw inputs have correspondingly close to one another feature vectors. The last
aspect is topology resemblance, i.e. the relative relation of system states is at least partially preserved
in the feature space as well.
The task of navigation is very relevant in all sorts of higher-level applications such as finding a signal

emitting source, self-driving cars, autonomous patrolling and it was investigated on 3D environments
by [Hussein et al., 2018]. The resulting method is labeled as DAI: Deep Active Imitation. DAI also
considers raw pixels like DQN, but unlike DQN the agent has a dynamic 3D viewpoint instead of a
static one like in the Atari games. This work is also different in the sense that the networks employed
are trained on demonstrations of correct navigation behaviour and additionally the system uses active
learning, i.e. asks an expert in situations of high uncertainty to generalize to unseen situations. A
lesson that might be drawn therefore is that instead of reinforcement learning with high-dimensional

37

3 Related Work

observations and many trial and error examples, it may be more efficient to use high(-er)-dimensional
observations but only showing the "correct" examples that the agent can imitate and fine-tune by
posing questions to an expert.
Application of RL on real robots is more of a challenge than in a simulation environment and work

in this direction was performed by [Levine et al., 2016]. This work presents a policy gradient method
with raw RGB pixel input captured by a camera attached to a robot. Unlike the previous DQN and
DAI approaches, this method was tested on real world environments and tasks such as screwing the cap
of a bottle, stacking lego blocks, and others. This work is interesting not only because of application
to real robots, but also because it investigates the joint training of the perception and control blocks as
well as separate training of these components. In the end, the separate training achieves poor results,
whereas the combined training gives much better visuomotor policies in shorter computation time.
One of the exciting directions of artificial intelligence is using lessons learned from simulation and

self-play and transfer them with fine-tuning and additional training to real agents. Recent works such
as [Muratore et al., 2019] argue that even a direct transfer is possible through randomizing simulator
parameters, without any additional training on the robot. The work of [Akkaya et al., 2019] for
example demonstrates 100 % transfer learning on an unprecedentedly complex task that uses image
data. Multiple RGB camera inputs were used for vision pose estimation of a Rubik’s cube and the
policies were learned entirely in the virtual environment. Other works such as [Levine et al., 2015]
have demonstrated transfer learning using high-dimensional representations with the necessity to at
least carry a minimal or modest fine-tuning on the real robot. The work on manipulation of a Rubik’s
cube however goes to the extreme and shows that, provided appropriate simulation environments, and
more importantly: simulation techniques, the learning algorithms can generalize to handle real world
unseen and quite significant perturbations without any additional real world training.
All in all, the approaches that consider high-dimensional 2D and 3D observations are applied on

single agent scenarios, which creates a void to investigate for the multi-agent case. At the same time
there needs to be a way to ensure a two phase training process: a first phase of simulation in a
purely virtual environment and then a second phase of fine-tuning on a real robot. It is therefore
very important to make the simulation geared to handle real world dynamics and noise. This however
does not mean that the exact physical properties of the real world task have to be captured in the
simulator itself. More important and practical is the simulation technique, e.g. injection of noise,
model parameter randomization, etc.

38

4 Methods

This chapter will go into the details of the newly proposed algorithm entitled: COGNet-DICE, which
is a development of the discrete version G-DICE for the case of continuous observations. The chapter
describes how deep neural networks are used for partitioning the observation space into regions and
at the same time learning how to associate these regions to next nodes in the graph. It also describes
how the action distributions are learned for each node. Subsequently, the algorithm will be adapted
for computer vision applications with high-dimensional observations. The issue of transfer learning
will also be discussed and the algorithm will be adapted to handle noise such that it can be readily
available for applications on real robots.

4.1 The COGNet-DICE planning algorithm

COGNet-DICE: Continuous Observation Graph Neural Net-based Direct Cross-Entropy policy search
is an algorithm that leverages deep learning for joint perception and planning. The "Net" term stands
for the fact that a neural network is built into each node of a graph data structure. The neural network
provides a more intimate connection between the process of observation and planning, as it accepts
a certain observation as input and directly outputs the next node within the graph to transition to.
At the same time each node transition will be associated with an action being carried out. Hence the
intricate connection between observing and acting. In its plain version COGNet-DICE is meant to deal
with 1D continuous signals. With the addition of specialized compression neural nets, it can handle
multi-dimensional signals as well.

4.1.1 Policy representation

The setup for this problem is as follows: There are n agents indexed by i ∈ [1 . . . n], each one following
a policy πi represented by a finite state controller, short FSC. Each FSC has its own number of nodes
Nn. Every node outputs a distribution over actions ai,t ∼ fθi(ai,t | qi,t). All agents sample an action
at each time step t from these distributions. This results in a joint action at = 〈a1,t, a2,t, . . . , an,t〉.
After the actions are taken, the agents receive a reward R(st, at). At the next time step, the agents
receive a joint observation zt+1 = 〈z1,t+1, z2,t+1, . . . , zn,t+1〉. Based on the current node qi,t and the
observation received, the controller transitions to the next node qi,t+1 according to the distribution
gφi(qi,t+1 | zi,t+1, qi,t). Note that this node transition must not be confused with the state transition.
The state transition follows its own distribution P (st+1 | st, at) and there may be many policy graph
transitions encoding one single state.
A local policy in the graph framework can be thought of as a tuple of the form

πi = 〈Qi, θi, φi〉 (4.1)

where Qi is a set of nodes, θi are the parameters of an action distribution function f and φi are the
parameters for a node transition distribution g. A joint policy is a combination of these tuples for all
agents.
Further explanations will be consistent with the notation from Table 2.1 and with the additional

notation from Table 4.1

39

4 Methods

Table 4.1: Notation extension

qi,t Local node of agent i at time t
~qi,t (qi,0, qi,1, . . . , qi,t) A length-(t+ 1) local node sequence of agent i
qt 〈q1,t, q2,t, . . . , qn,t〉 Joint nodes at time t; tuple of local nodes
~qt 〈~q1,t, ~q2,t, . . . , ~qn,t〉 A length-(t+ 1) joint node sequence; tuple of local sequences

4.1.2 Learning

The overall goal of the algorithm is to learn θi that parametrizes the action distribution and φi that
parametrizes the next node distribution. Learning requires ground truth data to be acquired via a
simulator of the problem. Assuming we’ve built a simulator for the concrete task that we want to
solve, the next step is to run it for many simulations called "rollouts" in order to accumulate ground
truth training data as described by Listing 2.

Algorithm 2 Rollout using a stochastic joint policy
Input: FSC πi for each agent i = 1 . . . , n, initial belief state b0, horizon h
Output: Sequences of states, FSC nodes, observations, actions and rewards
1: procedure Rollout(π, b0, h)
2: s0 ∼ b0 . Sample initial state
3: q0 = 〈q1,0, . . . , qn,0〉 = 〈1, . . . , 1〉 . Set initial nodes by convention to first node
4: ~s0 = (s0); ~q0 = (q0); ~z0 = (); ~a−1 = (); ~r−1 = () . Initialize sequences
5: for t = 0, 1, . . . , h− 1 do
6: at = 〈a1,t, . . . , an,t〉 ∼ 〈fθ1(a1,t | q1,t), . . . , fθn(an,t | qn,t)〉 . Sample next actions
7: rt ← R(st, at) . Get reward
8: st+1 ∼ P (st+1 | st, at) . Sample next state
9: zt+1 = 〈z1,t+1, . . . , zn,t+1 〉 ∼ P (zt+1 | st+1, at) . Sample next observation

10: qt+1 = 〈q1,t+1, . . . , qn,t+1〉 ∼ 〈gφ1(q1,t+1 | z1,t+1, q1,t), . . . , gφn(qn,t+1 | zn,t+1, qn,t)〉
11: ~st+1 = (~st, st+1); ~qt+1 = (~qt, qt+1); ~zt+1 = (~zt, zt+1); ~at = (~at−1, at); ~rt = (~rt−1, rt)
12: end for
13: return ~sh, ~qh, ~zh, ~ah−1, ~rh−1
14: end procedure

Rollout evaluation One rollout will result in the following sequence of rewards:

~rh−1 = (r0, r1, . . . , rh−1)

All rewards are summed up using a discount factor γ meant to put more emphasis on early rewards:

v(~rh−1) =

h−1∑
t=0

γtrt. (4.2)

After many such rollouts are executed, the value of the joint policy is estimated as the sample average
of all the cumulative rewards:

V̂ (π) =
1

k

k∑
j=1

v(~r
(j)
h−1). (4.3)

To be statistically significant, at least 30 rollouts have to be carried out and then take the average.
In case less simulations need to be carried out to save computation time, Bessel’s correction is used
to more accurately calculate the average rewards, which essentially means we compute the average by
normalizing with 1

k−1 instead of 1
k in equation (4.3).

40

4.1 The COGNet-DICE planning algorithm

Action distribution To gather training data, only a subset of filtered rollouts are considered. The
number of times node qi ∈ Qi is visited is:

n(qi) =
∑̀
j=1

h−1∑
t=0

δ(q
(j)
i,t , qi), (4.4)

where δ is the Kronecker delta function1. The number of times local action ai is chosen in node qi is:

n(ai, qi) =
∑̀
j=1

h−1∑
t=0

δ(q
(j)
i,t , qi)δ(a

(j)
i,t , ai). (4.5)

The maximum likelihood estimate, or MLE is calculated by counting the number of times action ai
was chosen in node qi and dividing by the total number of times the node qi was visited:

θ̂i,qi(ai) =
n(ai, qi)

n(qi)
. (4.6)

Subsequently, smoothing is done with a learning rate of α:

θnew
i = αθ̂i + (1− α)θi, (4.7)

Node transition distribution For the filtered jth rollout, the sequence of local observations is ~z(j)i,h =

(z
(j)
i,1 , . . . , z

(j)
i,h) and the sequence of nodes is ~q(j)i,h−1 = (q

(j)
i,0 , q

(j)
i,1 , . . . , q

(j)
i,h−1). Algorithm 3 is applied on

these sequences of local observations and nodes to extract a set D(j) of training data. The entire
training dataset for node qi is obtained by combining the datasets from each filtered rollout:

D(qi) =
⋃̀
j=1

D(j). (4.8)

Algorithm 3 Gathering training data for the node transition function of node qi
Input: Sequence of local observations and nodes, desired node qi
Output: Sequences of states, FSC nodes, observations, actions and rewards
1: procedure ExtractTrainingData(~zi,h, ~qi,h, qi)
2: D ← ∅ . Initialize training dataset
3: for t = 0, 1, . . . , h− 1 do
4: if qi,t = qi then
5: D ← D ∪ (zi,t+1, qi,t+1) . Add next observation and node pair.
6: end if
7: end for
8: return D
9: end procedure

During the training process, a categorical cross-entropy loss is used, where the input to the neural
network embedded in node qi,t is the observation zi,t+1 and the target is a one-hot vector with the
attribute corresponding to the next node qi,t+1 set to one.

1δ(x, y) =

{
1 if x = y,

0 otherwise.

41

4 Methods

Thresholding To be able to ensure policy improvements over time there needs to be a way to select
good incremental policies based on which to do the policy upgrade. The algorithm stores in a list U
all policies that surpass a certain threshold Vw:

U = U ∪X, ∀X such that V (X) > Vw

, where V (X) stands for the value of policy sample X. At the beginning of an iteration cycle, U is an
empty set: U = ∅. At the end of the iteration, only a small number Nb of best samples will be selected
as a subset of U to update the policy: B ⊂ U , π = u(B), where B is the set of best Nb samples from
U and u(B) is the function that carries the update based on maximum likelihood estimation using the
best policy samples.
One important point is how exactly to fix and evaluate new policy sample candidates for improve-

ment. The solution chosen stems from calculus and is explained with analogy to calculation of partial
derivatives and gradients. The analogy with a gradient is made because it points into the direction
af maximum growth of a function, which is also what we strive for in finding an optimal policy π∗.
When we intend for example to calculate the gradient of a multivariable function f(X,Y, Z), i.e.
~∇f = 〈 ∂f∂X ,

∂f
∂Y ,

∂f
∂Z 〉, for each partial derivative we consider the change in only one of the variables. For

instance, when computing ∂f
∂X , the other Y and Z arguments are kept constant.

The same principle is applied also in this algorithm: when certain samples X are selected as poten-
tially useful for a policy update, a clone of the current joint policy object is created, where the actions
are deterministically set in the corresponding nodes in which they were taken in the rollout. The idea
is therefore to see how does the joint policy behave if only a certain action in a certain node is changed,
and all other parameters of the joint policy are kept as in the previous iteration. If the cloned joint
policy has a value surpassing Vw, then the sample X is stored in the set U .
The choice to apply this algorithmic design decision is based not only on the analogy with derivatives

and gradients in calculus, but also from a philosophical and biological point of view. Given that G-
DICE is an evolutionary algorithm where only the fittest policies survive, the decision to apply this
trick is also based on evidence from evolution: nature makes many small mutations of single genes
and not huge leaps of faith with sudden multiple gene mutations. When too many genes are mutated,
there is a greater risk of degenerate offspring. It is safer and more optimal to make small steps in the
direction of gradually better generations.

Entropy Injection One of the edge cases that need to be handled is when the algorithm converges very
slowly to a fixed joint policy value. This might mean that it heads to a local optimum value or it already
got stuck in it without observing other alternative better policy it could climb to. In such cases we
need to somehow "shake the policy" so that new policy space regions are explored as a result. Another
way is to actually restart the algorithm from the very beginning, but this is more overhead since some
of the good learned representations will have to be relearned, which takes a very long time depending
on the task. Shaking the policy however is a better option and mathematically it means injecting noise
into the node distributions. This however does not have sufficient theoretical soundness, since it can
lead to erasing some important agent behaviours that required many iterations to learn. More justified
is the approach from [Omidshafiei et al., 2017] of performing maximum entropy injection: no random
noise is used, but rather a distribution that has maximum entropy from the classes of distributions
used when the algorithm first got initialized.
The equation looks as follows:

θ ← (1− αEI)[αθk+1 + (1− α)θk] + αEIθME (4.9)

where αθk+1 + (1−α)θk is the already described maximum likelihood estimation and smoothing steps
and αEI is the entropy injection rate typically from 1 to 3 %. This means that from time to time, the
algorithm will not only exploit a current trend of joint policy samples that lead to only small value
improvements, but it will also try to explore other potentially better regions to sample from. The
maximum entropy distribution θME in our case is a uniform distribution, and hence very convenient
to work with.

42

4.2 Multi-dimensional COGNet-DICE with image data

The algorithm is programmed to initiate the entropy injection procedure when the standard deviation
of joint policy values in the past k iterations was below 0.5:

σ([Vi−k(X), . . . , Vi(X)]) < 0.5 (4.10)

where Vi denotes the value at iteration i of the policy X. A good number for k in practice is 4.
Additionally, to speed up the process of finding better policies, entropy injection also occurs when

the best value Vb has not been improved for more than b past iterations. Related to this, a good
side-effect of entropy injection is that we can also increase the overall learning rate α to speed up the
learning process and not worry much about degenerate convergence issues. That’s because, even if a
degenerate state is reached, the algorithm will start injecting entropy and will continue to do so until
the large-α step in the wrong direction that led to degeneracy is undone by αEI .

4.2 Multi-dimensional COGNet-DICE with image data

For a multi-dimensional computer vision case, the observation Z is a 2D image, i.e. Z ∈ Rn×m.
Therefore what needs to change is the architecture of the neural network embedded in each node, such
that it is able to accept a batch of n×m images.
Additionally, we would like to have the ability to feed to the neural nets in each node more training

data than what the simulator can provide. This is not mandatory, but desirable, so that agents can
become more adapted to noise they will surely encounter in real world applications. For this reason we
will make use of a global Variational Autoencoder that will accept the observation from the simulator,
compress it and decode many times into several variations of the original input. The overall setup is
presented in Figure 4.1.

Figure 4.1: Using a global VAE for augmenting the observation dataset of each node’s observation
neural net. Such an approach creates noise robustness for a multiagent system. For this
thesis the VAE accepts 4 by 4 inputs with a flattened size of 16. In practice the input layer
can be adapted for any n by m input.

4.3 The Encoded COGNet-DICE planning algorithm

The aim of this methodology is to train the perception block on compressed inputs, so that we reduce
the time and space complexity by a significant factor. This approach involves incorporating the same
Variational Autoencoder used for data augmentation and noise robustness, however this time using it
only partially, i.e. to encode the observation into a smaller compressed version. The decoder component
is therefore omitted. When the simulator outputs the observation for an agent, it first goes through the
encoder part of the VAE which compresses it to a latent vector L consisting of just one real number.
As such, we can feed this number to the exact same architecture of baseline COGNet-DICE without
changing it in any way. The setup is shown graphically by Figure 4.2. The vector L can also have
other shapes, in which case the input layer of the observation neural nets has to be correspondingly
adapted.

43

4 Methods

Figure 4.2: Compressing the observation space. Only the encoder of the global noise robustness Vari-
ational Autoencoder is used to compress the observation space. For this thesis the VAE
accepts 4 by 4 inputs with a flattened size of 16 and compresses them to a size 1. In practice
the input layer can be adapted for any n by m input and the compression variable L can
have any reasonable length l < n ∗m

44

5 Experiments and Results

In this chapter we will describe experiments designed to compare the performance of COGNet-DICE
with the state of the art. We will also show results from investigation experiments on the properties
of COGNet-DICE when separately training the perception block. Subsequently, other investigation
experiments will study scaling COGNet-DICE to higher-dimensional observations.
We will present the two simulators built for the signal source localization problems: a tagging

simulator for a dynamic source localization problem in a one-dimensional (1D) world, and a heatmap
simulator for a static source localization problem in a two-dimensional (2D) world. Using the tagging
simulator we will compare the performance of COGNet-DICE and the already established algorithm
COG-DICE from [Clark-Turner and Amato, 2017]. The heatmap simulator will help investigate how
COGNet-DICE scales to multi-dimensional observations. Related to the 2D world, we will compare
different flavours of COGNet-DICE: one that accepts raw visual inputs and the other that accepts
compressed proxy inputs from a Variational Autoencoder, whose architecture and training procedure
will also be described.

5.1 Comparison experiment: COGNet-DICE vs COG-DICE

To be able to compare the new COGNet-DICE algorithm with the already established COG-DICE
algorithm, a simulator has been implemented based on the "tagging simulation" description from
[Clark-Turner and Amato, 2017]. Since COG-DICE is meant for observations in 1D, the simulator is
constrained to a space along a single line. The simulator essentially animates a moving signal emitting
source that is supposed to be effectively localized by many agents.
The main results are presented in Table 5.1. As can be seen, the new COGNet-DICE algorithm

reaches state of the art results. An in-depth analysis of the experimental setup and how these results
were achieved will be carried out in the following sections. The in-depth discussion will refer only to
experiments where Nnodes = 3 simply because it’s more convenient to illustrate the results graphically
for a smaller number of nodes.

Table 5.1: COGNet-DICE vs COG-DICE
Nnodes COGNet-DICE policy value COG-DICE policy value

3 1.594 1.540
6 11.103 1.794

5.1.1 Moving source localization simulator

In the attempt to answer the second research question, namely: how does the COGNet-DICE algorithm
perform in a source localization problem with continuous observations and states, a simulation was
developed called the "tagging simulation". The idea is as follows: there are a number of agents
called taggers and one special kind of agent called an evader. As the name implies the evader tries
to evade/run away from the taggers, that conversely try to tag/catch the evader. This problem is
essentially a canonical source localization problem. The source is dynamic and the agents need to find
its position almost exactly. The states are the agent positions in the world and they are continuous, i.e.
floating point numbers on the real axis. The observations are also continuous floating point numbers,
measuring the distance between the evader and each individual tagging agent. The distance is not an
absolute value and can be either positive if the tagger is to the right of the evader, or negative if it
stands to the left. A graphical impression about the general setup can be acquired from Figure 5.1.

45

5 Experiments and Results

Figure 5.1: Tagging simulation setting: two tagger agents (T1 and T2) are trying to catch a moving
evader agent (E). All agents are moving left and right with a certain configurable speed. The
random variable P ∈ R denotes the state position of the agents. Additionally, the tagger
agents can sample observations with a certain stochastic error that is also configurable.

Using this tool, simulations of the joint policies can be run, called rollouts. A rollout will run a
horizon of h time steps and will result in accumulated experience in the form of sequences of actions,
observations, nodes and discounted cumulative rewards. After a certain number of rollouts, the accu-
mulated tuples will be sorted in the order of highest rewards and data from the top performing episodes
will be used for parameter updates.

For the comparison experiments the simulator was set up such that a successful tag is one where
the evader is within one unit of distance from the tagging agent. Therefore, the expected behaviour
to learn is that an agent has to tag when its observation is within the interval of -1 and 1: zt ∈ [−1, 1]
The 1D simulation world was set to have a length of 10 units and the rewards are presented in Table
5.2.

Table 5.2: Rewards on the tagging simulation problem. The state S of an agent is its position along
the axis of real numbers R. A successful tag is when the tagger performs it standing within
a distance of one with respect to the evader.
Action |S(Tagger)− S(Evader)| ∈ [0, 1] |S(Tagger)− S(Evader)| ∈ (1, 10]

Tag +50 -20
Move Left -1 -1
Move Right -1 -1

5.1.2 COGNet-DICE for one-dimensional dynamic source localization

The experiment presented in Figures 5.3 to 5.5 was set up for a problem with 2 agents and a horizon of
3. The aim was to learn a very compressed policy and hence the number of nodes was set to 3 for each
agent. The experiment ran for 500 iterations and in each iteration it evaluated the top 100 joint policy
candidates out of 1000 rollouts, and only 10 were kept for the policy update procedure. To avoid the
likelihood of convergence to local optima, as well as increase the speed of finding good policies, the
learning rate α was set to 0.2 with entropy injection enabled. This resulted in a best policy value of
1.594.

Combining the information from the action distributions in Figure 5.3 and next node distributions
for each agent and node in Figures 5.4 and 5.5, we can synthesize the following controller graphs
presented in Figure 5.2

46

5.1 Comparison experiment: COGNet-DICE vs COG-DICE

(a) Agent 0 (b) Agent 1

Figure 5.2: Plain COGNet-DICE learned controllers. One agent does the tagging, and the other be-
haves conservatively.

The policy learned is such that one agent will tag if it sees precisely the interval set in the simulator
for a successful tag, i.e.: [−1, 1]. The other agent however will be more conservative and never risk
tagging, because it is more safe to move left and right receiving -1 than wrongly attempting a tag that
would cost -20.

(a) Agent0, Node0 (b) Agent0, Node1 (c) Agent0, Node2

(d) Agent1, Node0 (e) Agent1, Node1 (f) Agent1, Node2

Figure 5.3: Plain COGNet-DICE action distributions for all agents and nodes.

47

5 Experiments and Results

(a) Node 0 before training (b) Node 1 before training (c) Node 2 before training

(d) Node 0 after training (e) Node 1 after training (f) Node 2 after training

Figure 5.4: Agent 0 next node distributions for plain COGNet-DICE: initial distributions on the top
row, final distributions on the bottom row.

(a) Node 0 before training (b) Node 1 before training (c) Node 2 before training

(d) Node 0 after training (e) Node 1 after training (f) Node 2 after training

Figure 5.5: Agent 1 next node distributions for plain COGNet-DICE: initial distributions on the top
row, final distributions on the bottom row.

48

5.1 Comparison experiment: COGNet-DICE vs COG-DICE

5.1.3 COG-DICE for one-dimensional dynamic source localization

The experiment above is competitive with COG-DICE by [Clark-Turner and Amato, 2017] with the
same exact parameters, excepts for the number of iterations, which for COG-DICE is 50 instead of
500 used for COGNet-DICE. This is not surprising since neural networks are notoriously data-hungry.
Also it should be noted that COG-DICE by [Clark-Turner and Amato, 2017] does require to specify
the number of regions the observation space should be divided into. For this experiment this parameter
was set to 2 with the rational that each node is forced to decide in what region it should tag, and when
it should abstain from tagging. In the end, the value of COG-DICE for this setup is 1.54 as opposed
to 1.594 from COGNet-DICE. Based on the information from the Tables 5.3 to 5.6 we can build the
controllers for both agents (see Figure 5.6)

(a) Agent 0 (b) Agent 1

Figure 5.6: COG-DICE learned controllers. Both agents risk tagging sometimes.

It should be noted that a neural net approach such as the one in COGNet-DICE is more general in
the sense that it decides on its own the number of observation regions to consider based on the seen
data. On the other hand, a manual setup of this parameter like in COG-DICE also has its advantages
in practice, because it represents injection of domain knowledge for faster training time and better
quality solutions. We can apply therefore a random search or grid search on this parameter to find out
the best value for each task individually. The purpose of a neural net approach is to avoid as much as
possible domain knowledge injection. Only a simulator of the task is needed, and the network should
learn just from that alone. The price to pay is that more training data is required than for model
based solutions.

Agent 0 Agent 1
Node 0 move left move right
Node 1 move left move right
Node 2 tag tag

Table 5.3: Actions taken in the COG-DICE experiment.

Agent 0 Agent 1
Node 0 -1.40933 -1.53025
Node 1 2.94166 -1.46706
Node 2 -5.35941 -2.81684

Table 5.4: Decision boundaries in the observation space for the COG-DICE experiment.

49

5 Experiments and Results

Before division After division
Node 0 Next node is 0 Next node is 1
Node 1 Next node is 2 Next node is 1
Node 2 Next node is 0 Next node is 0

Table 5.5: Next nodes for agent 0 as given by the COG-DICE algorithm.

Before division After division
Node 0 Next node 0 Next node 1
Node 1 Next node 1 Next node 2
Node 2 Next node 0 Next node 1

Table 5.6: Next nodes for agent 1 as given by the COG-DICE algorithm.

5.2 Separate training of the perception block in COGNet-DICE

A special case that works much faster for the tagging problem is when each node prefers one particular
action according to a Dirac delta distribution as exemplified in Figure 5.7. The idea is for each node to
be responsible only for one action and all actions to be represented by the graph. As such, the number
of nodes has to be greater than or equal to the number of actions each agent is capable of, such that
every action is represented by at least one node. The training becomes much faster because the task
is to train the perceptual block individually. There is no joint training of the policy and perception
components, but rather: we fix the planning component and train the perception system.

This approach works well in practice and is capable of reaching a policy value greater than 2 much
faster than through joint training. In the 1D tagging problem this setup achieves high values within
minutes of training instead of hours. It represents however injection of domain knowledge and defeats
the purpose of having a generic system that can learn on its own no matter what task in front of it.

Figure 5.7: Cyclic Dirac distributions spanning the entire action set, used to always sample a deter-
ministic action per node.

50

5.3 Multi-dimensional COGNet-DICE

Table 5.7: Results in the special case when the perception block is trained separately. Separate training
of the perception block leads to high rewards in a matter of tens of minutes instead of several
hours.

Nnodes Policy value
3 consistently greater than 2
6 consistently greater than 8

5.3 Multi-dimensional COGNet-DICE

This section will investigate scaling the COGNet-DICE algorithm to observations in higher dimensions.
At first the 2D simulator will be described, followed by the performance of the 2D COGNet-DICE on
raw images that the simulator outputs. Subsequently, the performance of the encoded version of
COGNet-DICE will be shown and compared with the 2D version. The summary of the main results
are presented in Table 5.8. Just as previously, only the experiments with a smaller number of graph
nodes will be discussed in depth, in this case for Nnodes = 4. This is purely for the purpose of more
intuitive, easier illustrations.

Table 5.8: 2D COGNet-DICE vs Encoded COGNet-DICE
Nnodes 2D COGNet-DICE policy value Encoded COGNet-DICE policy value

4 44.328 43.829
5 45.001 44.346

5.3.1 2D Intensity heatmap simulator

The simulator built for higher-dimensional observations is designed to generate signals propagating in
space. We assume each agent has a sensor that captures the signal and transforms it into an intensity
heatmap. The overall world scene is static and has a size of 16 by 16. We assume the signal to be
shaped as a Gaussian with a peak in the top-left corner of the scene as presented by Figure 5.8. Each
agent is capable of only perceiving 4 by 4 patches from the overall scene as the ones from Figure 5.9.
The agent always gets a reward of -1 when it detects only small amplitudes of the signal, such that a
sense of urgency is created for it to find the signal source faster. When the agent reaches a position that
is a radius of 4 away from the source, it receives a reward of +1 to encourage the behaviour of finding
significantly higher amplitudes of the signal than previously. When it is in the immediate vicinity of
the source, it receives +50. The ultimate goal is to teach all agents to find the exact position of the
emitting source in a 2D space. The agents have 4 actions, i.e. move vertically: up and down and move
horizontally: left and right. There is no movement in depth. The rewards are presented in Table 5.9.

Table 5.9: Rewards on the heatmap simulation problem. Radius signifies the distance from the agent
to the signal emitting source.

Action Radius < 3 3 ≤ Radius < 4 Radius ≥ 4

Move Up +50 +1 -1
Move Down +50 +1 -1
Move Left +50 +1 -1
Move Right +50 +1 -1

51

5 Experiments and Results

Figure 5.8: A two-dimensional scene of size 16 by 16, representing a static source in the top-left corner
emitting a signal that decays from left to right according to a bell-shaped / Gaussian
exponential function. The signal amplitude is normalized between 0 and 1 as shown by the
color bar to the right.

(a) Vision patch 1 (b) Vision patch 2

Figure 5.9: Examples of 4 by 4 vision patches the Variational Autoencoder is trained on. These patches
represent the field of vision of an agent: a 4 by 4 grid with float values representing the
intensity of electromagnetic waves. The resulting images are therefore heatmaps of analogue
waves propagating from a fixed source in a 2D space.

5.3.2 Training the Variational Autoencoder

The Variational Autoencoder training dataset was created by generating scenes as the one presented
in Figure 5.8 and adding white noise with various means and standard deviations. Each noisy scene is
swiped from left to right and top to bottom, one pixel at a time in order to crop 4 by 4 patches that an

52

5.3 Multi-dimensional COGNet-DICE

agent is supposed to observe. In the end, many such noisy patches are generated and the Variational
Autoencoder is trained on them such that the reconstructed output captures the same relative ratio
between the pixel values as exhibited by the input. There is no emphasis on getting necessarily similar
absolute values between the input and the output.

The architecture of the VAE encoder is as follows: one linear input layer of size 16 that accepts a
flattened image patch of 4 by 4; a fully connected linear hidden layer of size 8; a latent layer of size 1,
i.e µ and Σ of the latent space are both vectors with just one attribute. The decoder is symmetrical
to the encoder without any extra layers.

Intuitively, the encoded system should work provided that we have a consistent and meaningful
encoding of the high-dimensional space. In our case, the latent variable L seems to encode a metric
proportional to the physical distance from the peak of the Gaussian heatmap as can be seen in Figure
5.10.

Figure 5.10: The µ component of the latent space L encodes a metric that correlates with the radial
distance from the peak of the intensity heatmap.

5.3.3 2D COGNet-DICE experiment

The 2D version of COGNet-DICE was set up as follows: 2 agents have to learn controllers with 4 nodes,
with a lookahead horizon of 4 steps, during 500 iterations. The number of rollouts per iteration was
1000, out of which the top 100 were evaluated by calculating average rewards. From the 100 evaluated,
only 10 were kept for policy improvement. The learning rate was set to 0.2 and entropy injection was
allowed. Unlike the plain version of COGNet-DICE, this version has a neural net with 160 hidden layer
nodes instead of 10, to accommodate for the inputs of size 4 by 4 (or flattened size of 16) instead of size
1 as it was the case for the original 1D implementation. The learned action distributions are presented
in Figures 5.11. As it can be observed, the algorithm correctly identifies the action of moving up and
to the left to identify the static signal source in the top left corner of the scene. In the end the value
of the best policy was 44.328, which was reached at iteration 221.

53

5 Experiments and Results

(a) Agent0, Node0 (b) Agent0, Node1

(c) Agent0, Node2 (d) Agent0, Node3

(e) Agent1, Node0 (f) Agent1, Node1

(g) Agent1, Node2 (h) Agent1, Node3

Figure 5.11: 2D COGNet-DICE action distributions for all agents and nodes. The agents correctly
prefer moving left and up towards the signal source.

54

5.3 Multi-dimensional COGNet-DICE

5.3.4 Encoded COGNet-DICE experiment

The encoded COGNet-DICE was ran with exactly the same parameters as the 2D version, except for
the number of hidden nodes being 10 instead of 160, since the compressed input has a size of 1, a factor
of 16 smaller than the raw 2D input. The value learned by the encoded version of COGNet-DICE is
43.829, which is very close to what the two-dimensional version learned using fully-sized image patches,
namely: 44.328. Unlike the 2D version however, the encoded version reaches the best value at iteration
99, more than twice as fast than in the case of using raw inputs. The action distributions are shown
in Figure 5.13 and it can be observed how it learns the same correct behaviour of moving mainly up
and to the left. The next node distributions are presented in Figures 5.14 and 5.15.
The information from Figures 5.13 to 5.15 is summarized in the controllers from Figure 5.12. Note

how when the observation goes further away from -2.5 as presented by Figure 5.10, the controllers have
a tendency to explore arbitrarily in all directions. They create a sub-policy of exploration as shown by
node 1 in both graphs. Getting closer to -2.5 will consistently result in greedily choosing the actions
of moving up or to the left, in other words: a sub-policy of exploitation to get higher rewards.

(a) Agent 0

(b) Agent 1

Figure 5.12: Encoded COGNet-DICE learned controllers. Node 1 for both graphs serves as an explo-
ration sub-policy. Other nodes describe an exploitation sub-policy to gain high rewards.

55

5 Experiments and Results

(a) Agent0, Node0 (b) Agent0, Node1

(c) Agent0, Node2 (d) Agent0, Node3

(e) Agent1, Node0 (f) Agent1, Node1

(g) Agent1, Node2 (h) Agent1, Node3

Figure 5.13: Encoded COGNet-DICE action distributions for all agents and nodes. Correct actions of
moving up and to the left are preferred, just like in the case of 2D COGNet-DICE.

56

5.3 Multi-dimensional COGNet-DICE

(a) Node 0 before training (b) Node 1 before training

(c) Node 2 before training (d) Node 3 before training

(e) Node 0 after training (f) Node 1 after training

(g) Node 2 after training (h) Node 3 after training

Figure 5.14: Agent 0 next node distributions using encoded COGNet-DICE

57

5 Experiments and Results

(a) Node 0 before training (b) Node 1 before training

(c) Node 2 before training (d) Node 3 before training

(e) Node 0 after training (f) Node 1 after training

(g) Node 2 after training (h) Node 3 after training

Figure 5.15: Agent 1 next node distributions using encoded COGNet-DICE

58

6 Conclusions

This thesis proposed a new algorithm for joint perception and planning, namely COGNet-DICE: Con-
tinuous Observation Graph Neural Net-based Direct Cross-Entropy policy search. The algorithm makes
use of graphs and customized neural networks embedded in all the graph nodes, as well as a unique,
global Variational Autoencoder. The algorithm is capable of handling one-dimensional continuous
observation problems with many agents, and without pruning the space of policies, as well as very
high-dimensional discrete observations for computer vision applications. The algorithm was verified
on a dynamic source localization, as well as a static source localization problems.
One of the advantages of the neural net approach is that there is no need to specify the number of

division regions in the observation space, which is a requirement for other solutions such as COG-DICE.
Another important aspect is that it leverages deep learning and hence goes more in the direction of
cognition than other methods using plain machine learning models. Deep learning has the advantage
that it can always be scaled with deeper and more sophisticatly architectured networks, and it also
emulates how natural processors, e.g. human brains adapt to new behaviour. The results mentioned
in this thesis can probably be placed among the beginning of a trend where graphical models will be
combined with all sorts of differently designed neural nets to reverse engineer brain-like structures. The
promising thing about having graphs combined with neural nets is that they can emerge an architecture
of specialized blocks just like in a human brain, as suggested by the principle of compositionality
in [Lake et al., 2017] about how to build machines that learn and think like people.
The research questions posed at the beginning where answered in a rather promising way. The first

question: "Can a graph-based direct cross-entropy algorithm be combined with neural networks and
successfully trained to directly couple the tasks of perception and planning ?" has a positive answer.
Combining graphs for planning and neural networks for perception results in a system that can be
successfully trained in a joint, end-to-end manner. Separate training of the perception block was also
attempted as an extra experiment and produced very good results. However, there is no guarantee
separate training will fit any problem, and the experiment took advantage of human prior knowledge
about the nature of the task involved in the experiment. Nevertheless, if offline training speed is a
concern, separate training is a viable solution.
Second question: "If yes, how does such an algorithm perform in the case of continuous observations

and states ? In particular: is such an algorithm useful for source localization problems with continuous
observations and states ?" also has "yes" as an answer. The algorithm can handle continuous source
localization problems successfully, just like other state of the art methods. The extra detail is that
COGNet-DICE requires more training time and more data points on average. It was also observed
that with more nodes in the policy graphs, very good results are usually much easier to reach, even if
the training dataset is not increased substantially.
Third question was: "Does this algorithm scale to very high-dimensional discrete inputs, such as

images, when we use a lossy compression scheme derived with the help of a Variational Autoencoder
?". The answer is: "Yes it does". The Variational Autoencoder needs to be customized for the data
it compresses. In this thesis the high-dimensional observations were reduced to a vector with just one
attribute, so that the baseline COGNet-DICE could readily be used. However, the observation neural
nets can easily be adapted to accept other shapes of the compressed input as well, in case it is not
possible to meaningfully compress the original input to a single float number. The added benefit of
compressing is not only less computation in the offline training phase, but also noise robustness in the
online application phase. The Variational Autoencoder is therefore a valuable component for transfer
learning to real uncontrolled environments.
Just like any other solutions, COGNet-DICE is not perfect. One of the drawbacks is that it requires

a lot of training time. The speed of training and experimental results can be improved dramatically
with the injection of domain knowledge. However, in its baseline form, COGNet-DICE does not require

59

6 Conclusions

human prior knowledge and the original intention was to avoid any type of task-related hard coding.
As a result, it is able to learn on its own given enough time, with the currently attempted experiments
having a duration of 1-2 days on average. Another point of trade-off with model based machine learning
approaches is that COGNet-DICE does require at least 10 times as much data points to reach the same
level of performance as other state of the art solutions.
One of the possible further improvements is to use experience replay. It was not attempted so far due

to concerns of biasing the learning process, i.e. human-in-the-loop tampering. The experience replay
trick is nonetheless justified if done right and is strongly backed by evidence from the natural world
as shown by [Bendor and Wilson, 2012]. Also next to come is to use deeper and more sophisticated
neural nets that would result in much better representation learning for more complicated source
localization problems, as well as application to other tasks. The ultimate goal is to transfer the
learning done in the simulator to embodied robots and apply it to a real world task, executed in a
noisy, uncontrolled environment. Such an endeavour requires a more thorough training of the global
Variational Autoencoder and more careful modeling of the noise this component injects in the training
dataset of each graph node.

60

Bibliography

[Akkaya et al., 2019] Akkaya, I., Andrychowicz, M., Chociej, M., Litwin, M., McGrew, B., Petron, A.,
Paino, A., Plappert, M., Powell, G., Ribas, R., et al. (2019). Solving Rubik’s Cube with a Robot
Hand. arXiv preprint arXiv:1910.07113.

[Amato et al., 2010] Amato, C., Bonet, B., and Zilberstein, S. (2010). Finite-state controllers based
on Mealy machines for centralized and decentralized POMDPs. In Twenty-Fourth AAAI Conference
on Artificial Intelligence.

[Amato et al., 2007] Amato, C., Carlin, A., and Zilberstein, S. (2007). Bounded dynamic programming
for decentralized POMDPs. In AAMAS 2007 workshop on multi-agent sequential decision making
in uncertain domains.

[Bendor and Wilson, 2012] Bendor, D. and Wilson, M. A. (2012). Biasing the content of hippocampal
replay during sleep. Nature neuroscience, 15(10):1439.

[Bernstein et al., 2002] Bernstein, D. S., Givan, R., Immerman, N., and Zilberstein, S. (2002). The
complexity of decentralized control of Markov decision processes. Mathematics of operations research,
27(4):819–840.

[Bertsekas, 2019] Bertsekas, D. (2019). Multiagent Rollout Algorithms and Reinforcement Learning.
arXiv preprint arXiv:1910.00120.

[Clark-Turner and Amato, 2017] Clark-Turner, M. and Amato, C. (2017). COG-DICE: An Algorithm
for Solving Continuous-Observation Dec-POMDPs. In IJCAI, pages 4573–4579.

[De Boer et al., 2005] De Boer, P.-T., Kroese, D. P., Mannor, S., and Rubinstein, R. Y. (2005). A
tutorial on the cross-entropy method. Annals of operations research, 134(1):19–67.

[Doersch, 2016] Doersch, C. (2016). Tutorial on variational autoencoders. arXiv preprint
arXiv:1606.05908.

[Hansen et al., 2004] Hansen, E. A., Bernstein, D. S., and Zilberstein, S. (2004). Dynamic program-
ming for partially observable stochastic games. In AAAI, volume 4, pages 709–715.

[Hussein et al., 2018] Hussein, A., Elyan, E., Gaber, M. M., and Jayne, C. (2018). Deep imitation
learning for 3D navigation tasks. Neural computing and applications, 29(7):389–404.

[Lake et al., 2017] Lake, B. M., Ullman, T. D., Tenenbaum, J. B., and Gershman, S. J. (2017). Building
machines that learn and think like people. Behavioral and brain sciences, 40.

[Lange and Riedmiller, 2010] Lange, S. and Riedmiller, M. (2010). Deep auto-encoder neural networks
in reinforcement learning. In The 2010 International Joint Conference on Neural Networks (IJCNN),
pages 1–8. IEEE.

[Lauri et al., 2019] Lauri, M., Pajarinen, J., and Peters, J. (2019). Information Gathering in Decentral-
ized POMDPs by Policy Graph Improvement. In Proceedings of the 18th International Conference
on Autonomous Agents and MultiAgent Systems, pages 1143–1151. International Foundation for
Autonomous Agents and Multiagent Systems.

[Law and Gold, 2009] Law, C.-T. and Gold, J. I. (2009). Reinforcement learning can account for
associative and perceptual learning on a visual-decision task. Nature neuroscience, 12(5):655.

61

Bibliography

[Levine et al., 2016] Levine, S., Finn, C., Darrell, T., and Abbeel, P. (2016). End-to-end training of
deep visuomotor policies. The Journal of Machine Learning Research, 17(1):1334–1373.

[Levine et al., 2015] Levine, S., Wagener, N., and Abbeel, P. (2015). Learning contact-rich manipula-
tion skills with guided policy search (2015). arXiv preprint arXiv:1501.05611.

[Lillicrap et al., 2015] Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., Silver,
D., and Wierstra, D. (2015). Continuous control with deep reinforcement learning. arXiv preprint
arXiv:1509.02971.

[Mnih et al., 2013] Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra,
D., and Riedmiller, M. (2013). Playing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602.

[Mnih et al., 2015] Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G.,
Graves, A., Riedmiller, M., Fidjeland, A. K., Ostrovski, G., et al. (2015). Human-level control
through deep reinforcement learning. Nature, 518(7540):529–533.

[Muratore et al., 2019] Muratore, F., Gienger, M., and Peters, J. (2019). Assessing Transferability
from Simulation to Reality for Reinforcement Learning. IEEE transactions on pattern analysis and
machine intelligence.

[Nair et al., 2003] Nair, R., Tambe, M., Yokoo, M., Pynadath, D., and Marsella, S. (2003). Taming
decentralized POMDPs: Towards efficient policy computation for multiagent settings. In IJCAI,
volume 3, pages 705–711.

[Oliehoek et al., 2016] Oliehoek, F. A., Amato, C., et al. (2016). A concise introduction to decentralized
POMDPs, volume 1. Springer.

[Oliehoek et al., 2008a] Oliehoek, F. A., Kooij, J. F., and Vlassis, N. (2008a). A cross-entropy approach
to solving Dec-POMDPs. In Advances in Intelligent and Distributed Computing, pages 145–154.
Springer.

[Oliehoek et al., 2008b] Oliehoek, F. A., Kooij, J. F., and Vlassis, N. (2008b). The cross-entropy
method for policy search in decentralized POMDPs. Informatica, 32(4):341–357.

[Oliehoek et al., 2008c] Oliehoek, F. A., Spaan, M. T., and Vlassis, N. (2008c). Optimal and ap-
proximate Q-value functions for decentralized POMDPs. Journal of Artificial Intelligence Research,
32:289–353.

[Omidshafiei et al., 2016] Omidshafiei, S., Agha-Mohammadi, A.-A., Amato, C., Liu, S.-Y., How,
J. P., and Vian, J. (2016). Graph-based cross entropy method for solving multi-robot decentral-
ized POMDPs. In 2016 IEEE International Conference on Robotics and Automation (ICRA), pages
5395–5402. IEEE.

[Omidshafiei et al., 2017] Omidshafiei, S., Amato, C., Liu, M., Everett, M., How, J. P., and Vian, J.
(2017). Scalable accelerated decentralized multi-robot policy search in continuous observation spaces.
In 2017 IEEE International Conference on Robotics and Automation (ICRA), pages 863–870. IEEE.

[Oord et al., 2016] Oord, A. v. d., Kalchbrenner, N., and Kavukcuoglu, K. (2016). Pixel recurrent
neural networks. arXiv preprint arXiv:1601.06759.

[Pajarinen and Peltonen, 2011] Pajarinen, J. K. and Peltonen, J. (2011). Periodic finite state con-
trollers for efficient POMDP and DEC-POMDP planning. In Advances in Neural Information Pro-
cessing Systems, pages 2636–2644.

[Papadimitriou and Tsitsiklis, 1987] Papadimitriou, C. H. and Tsitsiklis, J. N. (1987). The complexity
of Markov decision processes. Mathematics of operations research, 12(3):441–450.

62

Bibliography

[Riedmiller, 2005] Riedmiller, M. (2005). Neural fitted Q iteration–first experiences with a data efficient
neural reinforcement learning method. In European Conference on Machine Learning, pages 317–328.
Springer.

[Szer et al., 2012] Szer, D., Charpillet, F., and Zilberstein, S. (2012). MAA*: A heuristic search
algorithm for solving decentralized POMDPs. arXiv preprint arXiv:1207.1359.

[Van den Oord et al., 2016] Van den Oord, A., Kalchbrenner, N., Espeholt, L., Vinyals, O., Graves,
A., et al. (2016). Conditional image generation with pixelcnn decoders. In Advances in neural
information processing systems, pages 4790–4798.

63

Eidesstattliche Versicherung

Hiermit versichere ich an Eides statt, dass ich die vorliegende Arbeit selbstständig und ohne fremde
Hilfe angefertigt und mich anderer als der im beigefügten Verzeichnis angegebenen Hilfsmittel nicht
bedient habe. Alle Stellen, die wörtlich oder sinngemäß aus Veröffentlichungen entnommen wurden,
sind als solche kenntlich gemacht. Ich versichere weiterhin, dass ich die Arbeit vorher nicht in einem
anderen Prüfungsverfahren eingereicht habe und die eingereichte schriftliche Fassung der auf dem
elektronischen Speichermedium entspricht.
Ich bin mit einer Einstellung in den Bestand der Bibliothek des Fachbereiches einverstanden.

Hamburg, den Unterschrift:

	Introduction
	Integrated continuous perception and planning with high dimensions
	Technical Applications
	Biological Motivation
	Core concepts made easy
	Graphical planning models
	Frequentist vs Bayesian approach to learning
	How to measure learning
	Compressing perception

	Overview of previous solutions
	New research questions
	Main contributions
	Reasons and intuition

	Background Theory
	Decentralized-POMDPs
	Cross-entropy optimization
	Variational Autoencoders
	G-DICE

	Related Work
	Solving Dec-POMDPs
	Exact solutions
	Approximate solutions

	High-dimensional observations in decision-making under uncertainty

	Methods
	The COGNet-DICE planning algorithm
	Policy representation
	Learning

	Multi-dimensional COGNet-DICE with image data
	The Encoded COGNet-DICE planning algorithm

	Experiments and Results
	Comparison experiment: COGNet-DICE vs COG-DICE
	Moving source localization simulator
	COGNet-DICE for one-dimensional dynamic source localization
	COG-DICE for one-dimensional dynamic source localization

	Separate training of the perception block in COGNet-DICE
	Multi-dimensional COGNet-DICE
	2D Intensity heatmap simulator
	Training the Variational Autoencoder
	2D COGNet-DICE experiment
	Encoded COGNet-DICE experiment

	Conclusions
	Bibliography
	Eidesstattliche Versicherung

